Design and Implementation of BIOLOID Humanoid Robot

Author(s):  
Hilberto Ayala ◽  
Yujian Fu

Research in humanoid robot design and implementation is quite challenging due to the complexity of the system and multiple objects involved. Stability, gait generation, navigation and object detection and recognition are all key factors in the humanoid robot design. Researchers in humanoid robot design has put dramatic efforts on one aspect and made assumption on many other aspects. Humanoid robot research involves challenge issues of stability of motion, body movement, navigation, in addition to the issues of path generation, object detection, collision avoidance in the wheeled robots. Rooted from the previous experimental study of wheeled robotics systems, the research project of BIOLOID humanoid robot was started on Fall 2013 and supported by Title III Strengthening Grant Program (HBGI) (DAAD17-02-C-0113). In this paper, we give an overview of the project design and implementation of BIOLOID humanoid robot, including hardware architecture, firmware design and device management, in an overall perspective research work of the motion planning of humanoid robots. In addition, a wide discussion of the issues we faced and challenges of research work is presented, with the results of the current on-going progress. This work will cover the overall hardware architecture, model based system design and behavior analysis using a systematic approach. The work is implemented on a soccer game scenario with a goalie and an offender role. This project has demonstrated a successful development process of collaborative humanoid robotics on a complex research and education platform of BIOLOID using a software engineering approach.

2020 ◽  
Vol 35 ◽  
Author(s):  
Kuo-Yang Tu ◽  
Hong-Yu Lin ◽  
You-Ru Li ◽  
Che-Ping Hung ◽  
Jacky Baltes

Abstract A humanoid robot developed to play multievent athletes like human has paved a way for interesting and popular robotics research. One of the great dreams is to develop a humanoid robot being able to challenge human athletes. Therefore, the challenge of humanoid robots to play archery against human is organized at Taichung, Taiwan, in HuroCup, FIRA 2018, on August 7th. The difficulties of developing humanoid robot are not just on playing archery. The humanoid robots for HuroCup must make use of the same hardware for the 10 events. In this paper, the design and implementation of the humanoid robot for archery are proposed under the trade off with other nine events. Therefore, the humanoid robot must have some special design and development on software. More specially, the humanoid robot must use professional bow to challenge human for archery competition. Therefore, in this paper, special shooting posture under constrained arm structure and motion planning of both arms for more torque to play professional bow are proposed. In addition, the further development of humanoid robot to improve archery shooting is summarized.


2006 ◽  
Vol 18 (3) ◽  
pp. 286-298 ◽  
Author(s):  
Tetsuya Taira ◽  
◽  
Nobuyuki Yamasaki

This paper describes the design and implementation of the reconfiguration mechanism for a modular humanoid robot. To aid researchers in their works and enable users to request various tasks, humanoid robots are expected to require such reconfiguration mechanism. A robot with the proposed reconfiguration mechanism potentially consists of several functional modules such as arms, mobile components, and heads, and can be used as some kinds of humanoid robots or as several autonomous functional robots. We evaluated the efficiency of our proposed reconfiguration mechanism through the experiences using reconfigurable modular humanoid robot prototype R1. Experimental results show that the proposed mechanism achieves expandable and flexible reconfiguration for researchers and users by changing the robot configuration to different types of robots for many purposes. We believe that our humanoid robot with the proposed reconfiguration mechanism will enable user-specific humanoid robots more easily than ever before.


Author(s):  
Fan Li ◽  
Danni Chang ◽  
Yisi Liu ◽  
Jian Cui ◽  
Shanshan Feng ◽  
...  

The first impression of robot appearance normally affects the interaction with physical robots. Hence, it is critically important to evaluate the humanoid robot appearance design. This study towards evaluating humanoid robot design based on global eye-tracking metrics. Two methods are selected to extract global eye-tracking metrics, including bin-analysis-based entropy and approximate entropy. The data are collected from an eye-tracking experiment, where 20 participants evaluate 12 humanoid robot appearance designs with their eye movements recorded. The humanoid robots are evaluated from five aspects, namely smartness, friendliness, pleasure, arousal, and dominance. The results show that the entropy of fixation duration and velocity, approximate entropy of saccades amplitude are positively associated with the subjective feelings induced by robot appearance. These findings can aid in better understanding the first impression of human-robot interaction and enable the eye-tracking-based evaluation of humanoid robot design. By combining the theory of design and bio-signals analysis, the study contributes to the field of Transdisciplinary Engineering.


2017 ◽  
Vol 14 (5) ◽  
pp. 172988141772845
Author(s):  
S Parasuraman ◽  
Phua Seong Hock ◽  
MKA Ahamed Khan ◽  
D Kingsly Jeba Singh ◽  
Chin Yun Han

Many features have to be solved by humanoid robot during soccer game to get evidences from the environment such as detect ball, goal, lines and other robotmates. Having these data, the robot has to self-localize and proceed for next action reactively and ensure sense–think–act process efficiently. Sense–think–act processes are still a challenge task for humanoid robots. Hence, a modular framework is proposed for soccer ball game in which the architecture is mainly composed of object detection, field detection and motion synchronization behaviours. Object detection is modularized into ball detection, segmentation and depth estimation to facilitate the control actions. Similarly, field detection is modularized into goalpost and boundaries detection. Motion synchronization is modularized into primitives such as scoring, kip up and diving which uses the proposed support polygon and centre of moment methods. The behaviour synchronization and execution takes place in multilayers which include player and keeper mode as expert layer, modular behaviours as reactive layers and servo and motor command are executed in skill layer. The behaviour analysis and performance are targeted on the trigonometric depth estimation, grid-based segmentation pattern learning and recognition as well as support polygon and Centre Of Mass (COM). Experimental results are demonstrated and discussed. The proposed modular framework in this work has been tested using the NAO robot.


Author(s):  
Yuefang Zhou ◽  
Tristan Kornher ◽  
Janett Mohnke ◽  
Martin H. Fischer

AbstractThis study investigated how touching and being touched by a humanoid robot affects human physiology, impressions of the interaction, and attitudes towards humanoid robots. 21 healthy adult participants completed a 3 (touch style: touching, being touched, pointing) × 2 (body part: hand vs buttock) within-subject design using a Pepper robot. Skin conductance response (SCR) was measured during each interaction. Perceived impressions of the interaction (i.e., friendliness, comfort, arousal) were measured per questionnaire after each interaction. Participants’ demographics and their attitude towards robots were also considered. We found shorter SCR rise times in the being touched compared to the touching condition, possibly reflecting psychological alertness to the unpredictability of robot-initiated contacts. The hand condition had shorter rise times than the buttock condition. Most participants evaluated the hand condition as most friendly and comfortable and the robot-initiated interactions as most arousing. Interacting with Pepper improved attitudes towards robots. Our findings require future studies with larger samples and improved procedures. They have implications for robot design in all domains involving tactile interactions, such as caring and intimacy.


Author(s):  
Giorgio Metta

This chapter outlines a number of research lines that, starting from the observation of nature, attempt to mimic human behavior in humanoid robots. Humanoid robotics is one of the most exciting proving grounds for the development of biologically inspired hardware and software—machines that try to recreate billions of years of evolution with some of the abilities and characteristics of living beings. Humanoids could be especially useful for their ability to “live” in human-populated environments, occupying the same physical space as people and using tools that have been designed for people. Natural human–robot interaction is also an important facet of humanoid research. Finally, learning and adapting from experience, the hallmark of human intelligence, may require some approximation to the human body in order to attain similar capacities to humans. This chapter focuses particularly on compliant actuation, soft robotics, biomimetic robot vision, robot touch, and brain-inspired motor control in the context of the iCub humanoid robot.


2010 ◽  
Vol 07 (01) ◽  
pp. 157-182 ◽  
Author(s):  
HAO GU ◽  
MARCO CECCARELLI ◽  
GIUSEPPE CARBONE

In this paper, problems for an anthropomorphic robot arm are approached for an application in a humanoid robot with the specific features of cost oriented design and user-friendly operation. One DOF solution is proposed by using a suitable combination of gearing systems, clutches, and linkages. Models and dynamic simulations are used both for designing the system and checking the operation feasibility.


2020 ◽  
Vol 12 (1) ◽  
pp. 58-73
Author(s):  
Sofia Thunberg ◽  
Tom Ziemke

AbstractInteraction between humans and robots will benefit if people have at least a rough mental model of what a robot knows about the world and what it plans to do. But how do we design human-robot interactions to facilitate this? Previous research has shown that one can change people’s mental models of robots by manipulating the robots’ physical appearance. However, this has mostly not been done in a user-centred way, i.e. without a focus on what users need and want. Starting from theories of how humans form and adapt mental models of others, we investigated how the participatory design method, PICTIVE, can be used to generate design ideas about how a humanoid robot could communicate. Five participants went through three phases based on eight scenarios from the state-of-the-art tasks in the RoboCup@Home social robotics competition. The results indicate that participatory design can be a suitable method to generate design concepts for robots’ communication in human-robot interaction.


Sign in / Sign up

Export Citation Format

Share Document