Machine Learning in Healthcare, Introduction and Real World Application Considerations

2018 ◽  
Vol 7 (2) ◽  
pp. 27-36 ◽  
Author(s):  
Stavros Pitoglou

Machine Learning, closely related to Artificial Intelligence and standing at the intersection of Computer Science and Mathematical Statistical Theory, comes in handy when the truth is hiding in a place that the human brain has no access to. Given any prediction or assessment problem, the more complicated this issue is, based on the difficulty of the human mind to understand the inherent causalities/patterns and apply conventional methods towards an acceptable solution, Machine Learning can find a fertile field of application. This article's purpose is to give a general non-technical definition of Machine Learning, provide a review of its latest implementations in the Healthcare domain and add to the ongoing discussion on this subject. It suggests the active involvement of entities beyond the already active academic community in the quest for solutions that “exploit” existing datasets and can be applied in the daily practice, embedded inside the software processes that are already in use.

2020 ◽  
pp. 13-23
Author(s):  
Stavros Pitoglou

Machine Learning, closely related to Artificial Intelligence and standing at the intersection of Computer Science and Mathematical Statistical Theory, comes in handy when the truth is hiding in a place that the human brain has no access to. Given any prediction or assessment problem, the more complicated this issue is, based on the difficulty of the human mind to understand the inherent causalities/patterns and apply conventional methods towards an acceptable solution, Machine Learning can find a fertile field of application. This article's purpose is to give a general non-technical definition of Machine Learning, provide a review of its latest implementations in the Healthcare domain and add to the ongoing discussion on this subject. It suggests the active involvement of entities beyond the already active academic community in the quest for solutions that “exploit” existing datasets and can be applied in the daily practice, embedded inside the software processes that are already in use.


Author(s):  
Stavros Pitoglou

Machine learning, closely related to artificial intelligence and standing at the intersection of computer science and mathematical statistical theory, comes in handy when the truth is hiding in a place that the human brain has no access to. Given any prediction or assessment problem, the more complicated this issue is, based on the difficulty of the human mind to understand the inherent causalities/patterns and apply conventional methods towards an acceptable solution, machine learning can find a fertile field of application. This chapter's purpose is to give a general non-technical definition of machine learning, provide a review of its latest implementations in the healthcare domain and add to the ongoing discussion on this subject. It suggests the active involvement of entities beyond the already active academic community in the quest for solutions that “exploit” existing datasets and can be applied in the daily practice, embedded inside the software processes that are already in use.


2021 ◽  
Author(s):  
J. Eric T. Taylor ◽  
Graham Taylor

Artificial intelligence powered by deep neural networks has reached a levelof complexity where it can be difficult or impossible to express how a modelmakes its decisions. This black-box problem is especially concerning when themodel makes decisions with consequences for human well-being. In response,an emerging field called explainable artificial intelligence (XAI) aims to increasethe interpretability, fairness, and transparency of machine learning. In thispaper, we describe how cognitive psychologists can make contributions to XAI.The human mind is also a black box, and cognitive psychologists have overone hundred and fifty years of experience modeling it through experimentation.We ought to translate the methods and rigour of cognitive psychology to thestudy of artificial black boxes in the service of explainability. We provide areview of XAI for psychologists, arguing that current methods possess a blindspot that can be complemented by the experimental cognitive tradition. Wealso provide a framework for research in XAI, highlight exemplary cases ofexperimentation within XAI inspired by psychological science, and provide atutorial on experimenting with machines. We end by noting the advantages ofan experimental approach and invite other psychologists to conduct research inthis exciting new field.


Intexto ◽  
2019 ◽  
pp. 166-184
Author(s):  
João Damasceno Martins Ladeira

This article discusses the Netflix recommendation system, expecting to understand these techniques as a part of the contemporary strategies for the reorganization of television and audiovisual. It renders problematic a technology indispensable to these suggestions: the tools for artificial intelligence, expecting to infer questions of cultural impact inscribed in this technique. These recommendations will be analyzed in their relationship with the formerly decisive form for the constitution of broadcast: the television flow. The text investigates the meaning such influential tools at the definition of a television based on the manipulation of collections, and not in the predetermined programming, decided previously to the transmission of content. The conclusion explores the consequences of these archives, which concedes to the user a sensation of choice in tension with the mechanical character of those images.


2020 ◽  
Vol 25 (2) ◽  
pp. 7-13
Author(s):  
Zhangozha A.R. ◽  

On the example of the online game Akinator, the basic principles on which programs of this type are built are considered. Effective technics have been proposed by which artificial intelligence systems can build logical inferences that allow to identify an unknown subject from its description (predicate). To confirm the considered hypotheses, the terminological analysis of definition of the program "Akinator" offered by the author is carried out. Starting from the assumptions given by the author's definition, the article complements their definitions presented by other researchers and analyzes their constituent theses. Finally, some proposals are made for the next steps in improving the program. The Akinator program, at one time, became one of the most famous online games using artificial intelligence. And although this was not directly stated, it was clear to the experts in the field of artificial intelligence that the program uses the techniques of expert systems and is built on inference rules. At the moment, expert systems have lost their positions in comparison with the direction of neural networks in the field of artificial intelligence, however, in the case considered in the article, we are talking about techniques using both directions – hybrid systems. Games for filling semantics interact with the user, expanding their semantic base (knowledge base) and use certain strategies to achieve the best result. The playful form of such semantics filling programs is beneficial for researchers by involving a large number of players. The article examines the techniques used by the Akinator program, and also suggests possible modifications to it in the future. This study, first of all, focuses on how the knowledge base of the Akinator program is built, it consists of incomplete sets, which can be filled and adjusted as a result of further iterations of the program launches. It is important to note our assumption that the order of questions used by the program during the game plays a key role, because it determines its strategy. It was identified that the program is guided by the principles of nonmonotonic logic – the assumptions constructed by the program are not final and can be rejected by it during the game. The three main approaches to acquisite semantics proposed by Jakub Šimko and Mária Bieliková are considered, namely, expert work, crowdsourcing and machine learning. Paying attention to machine learning, the Akinator program using machine learning to build an effective strategy in the game presents a class of hybrid systems that combine the principles of two main areas in artificial intelligence programs – expert systems and neural networks.


2019 ◽  
Vol 5 (2) ◽  
pp. 205630511984752 ◽  
Author(s):  
Jonathan Sterne ◽  
Elena Razlogova

This article proposes a contextualist approach to machine learning and aesthetics, using LANDR, an online platform that offers automated music mastering and that trumpets its use of supervised machine learning, branded as artificial intelligence (AI). Increasingly, machine learning will become an integral part of the processing of sounds and images, shaping the way our culture sounds, looks, and feels. Yet we cannot know exactly how much of a role or what role machine learning plays in LANDR. To parochialize the machine learning part of what LANDR does, this study spirals in from bigger contexts to smaller ones: LANDR’s place between the new media industry and the mastering industry; the music scene in their home city, Montreal, Quebec; LANDR use by DIY musicians and independent engineers; and, finally, the LANDR interface and the sound it produces in use. While LANDR claims to automate the work of mastering engineers, it appears to expand and morph the definition of mastering itself: it devalues people’s aesthetic labor as it establishes higher standards for recordings online. And unlike many other new media firms, LANDR’s connection to its local music scene has been essential to its development, growth, and authority, even as they have since moved on from that scene, and even as the relationship was never fully reciprocal.


2019 ◽  
Vol 87 (2) ◽  
pp. 27-29
Author(s):  
Meagan Wiederman

Artificial intelligence (AI) is the ability of any device to take an input, like that of its environment, and work to achieve a desired output. Some advancements in AI have focused n replicating the human brain in machinery. This is being made possible by the human connectome project: an initiative to map all the connections between neurons within the brain. A full replication of the thinking brain would inherently create something that could be argued to be a thinking machine. However, it is more interesting to question whether a non-biologically faithful AI could be considered as a thinking machine. Under Turing’s definition of ‘thinking’, a machine which can be mistaken as human when responding in writing from a “black box,” where they can not be viewed, can be said to pass for thinking. Backpropagation is an error minimizing algorithm to program AI for feature detection with no biological counterpart which is prevalent in AI. The recent success of backpropagation demonstrates that biological faithfulness is not required for deep learning or ‘thought’ in a machine. Backpropagation has been used in medical imaging compression algorithms and in pharmacological modelling.


Author(s):  
Atharv Jangam

Abstract: In this article we discuss ways AI can be fruitful and inimical at the same time and consider hurdles in implementing ethics and governance of AI. We conclude with presenting solutions to overcome this issue. Artificial intelligence (AI) is a technology that allows a computer system to mimic the human mind. AI, like humans, is capable of learning and developing itself through doing tasks such as planning, organizing, and executing numerous activities. However, as we develop and expand our understanding of AI, there are a few advantages and downsides that should be addressed. Privacy and security are vital, but they conflict with the advancement of AI technology since computers and AI require a large quantity of data to Comprehend and anticipate outcomes. With the advancement of technology, we should be able to maximize security and eliminate the current drawbacks. Keywords: Artificial Intelligence (AI), Autonomous, Machine Learning (ML), Governance, Ethics, Deepfake


2019 ◽  
Vol 9 (3) ◽  
pp. 11
Author(s):  
Zdenko Kodelja

The question of whether machine learning is real learning is ambiguous, because the term “real learning” can be understood in two different ways. Firstly, it can be understood as learning that actually exists and is, as such, opposed to something that only appears to be learning, or is misleadingly called learning despite being something else, something that is different from learning. Secondly, it can be understood as the highest form of human learning, which presupposes that an agent understands what is learned and acquires new knowledge as a justified true belief. As a result, there are also two opposite answers to the question of whether machine learning is real learning. Some experts in the field of machine learning, which is a subset of artificial intelligence, claim that machine learning is in fact learning and not something else, while some others – including philosophers – reject the claim that machine learning is real learning. For them, real learning means the highest form of human learning. The main purpose of this paper is to present and discuss, very briefly and in a simplifying manner, certain interpretations of human and machine learning, on the one hand, and the problem of real learning, on the other, in order to make it clearer that the answer to the question of whether machine learning is real learning depends on the definition of learning.


Sign in / Sign up

Export Citation Format

Share Document