scholarly journals Machine Learning in Context, or Learning from LANDR: Artificial Intelligence and the Platformization of Music Mastering

2019 ◽  
Vol 5 (2) ◽  
pp. 205630511984752 ◽  
Author(s):  
Jonathan Sterne ◽  
Elena Razlogova

This article proposes a contextualist approach to machine learning and aesthetics, using LANDR, an online platform that offers automated music mastering and that trumpets its use of supervised machine learning, branded as artificial intelligence (AI). Increasingly, machine learning will become an integral part of the processing of sounds and images, shaping the way our culture sounds, looks, and feels. Yet we cannot know exactly how much of a role or what role machine learning plays in LANDR. To parochialize the machine learning part of what LANDR does, this study spirals in from bigger contexts to smaller ones: LANDR’s place between the new media industry and the mastering industry; the music scene in their home city, Montreal, Quebec; LANDR use by DIY musicians and independent engineers; and, finally, the LANDR interface and the sound it produces in use. While LANDR claims to automate the work of mastering engineers, it appears to expand and morph the definition of mastering itself: it devalues people’s aesthetic labor as it establishes higher standards for recordings online. And unlike many other new media firms, LANDR’s connection to its local music scene has been essential to its development, growth, and authority, even as they have since moved on from that scene, and even as the relationship was never fully reciprocal.

Intexto ◽  
2019 ◽  
pp. 166-184
Author(s):  
João Damasceno Martins Ladeira

This article discusses the Netflix recommendation system, expecting to understand these techniques as a part of the contemporary strategies for the reorganization of television and audiovisual. It renders problematic a technology indispensable to these suggestions: the tools for artificial intelligence, expecting to infer questions of cultural impact inscribed in this technique. These recommendations will be analyzed in their relationship with the formerly decisive form for the constitution of broadcast: the television flow. The text investigates the meaning such influential tools at the definition of a television based on the manipulation of collections, and not in the predetermined programming, decided previously to the transmission of content. The conclusion explores the consequences of these archives, which concedes to the user a sensation of choice in tension with the mechanical character of those images.


2020 ◽  
Vol 25 (2) ◽  
pp. 7-13
Author(s):  
Zhangozha A.R. ◽  

On the example of the online game Akinator, the basic principles on which programs of this type are built are considered. Effective technics have been proposed by which artificial intelligence systems can build logical inferences that allow to identify an unknown subject from its description (predicate). To confirm the considered hypotheses, the terminological analysis of definition of the program "Akinator" offered by the author is carried out. Starting from the assumptions given by the author's definition, the article complements their definitions presented by other researchers and analyzes their constituent theses. Finally, some proposals are made for the next steps in improving the program. The Akinator program, at one time, became one of the most famous online games using artificial intelligence. And although this was not directly stated, it was clear to the experts in the field of artificial intelligence that the program uses the techniques of expert systems and is built on inference rules. At the moment, expert systems have lost their positions in comparison with the direction of neural networks in the field of artificial intelligence, however, in the case considered in the article, we are talking about techniques using both directions – hybrid systems. Games for filling semantics interact with the user, expanding their semantic base (knowledge base) and use certain strategies to achieve the best result. The playful form of such semantics filling programs is beneficial for researchers by involving a large number of players. The article examines the techniques used by the Akinator program, and also suggests possible modifications to it in the future. This study, first of all, focuses on how the knowledge base of the Akinator program is built, it consists of incomplete sets, which can be filled and adjusted as a result of further iterations of the program launches. It is important to note our assumption that the order of questions used by the program during the game plays a key role, because it determines its strategy. It was identified that the program is guided by the principles of nonmonotonic logic – the assumptions constructed by the program are not final and can be rejected by it during the game. The three main approaches to acquisite semantics proposed by Jakub Šimko and Mária Bieliková are considered, namely, expert work, crowdsourcing and machine learning. Paying attention to machine learning, the Akinator program using machine learning to build an effective strategy in the game presents a class of hybrid systems that combine the principles of two main areas in artificial intelligence programs – expert systems and neural networks.


2020 ◽  
Vol 49 (5) ◽  
pp. 20190441 ◽  
Author(s):  
Hakan Amasya ◽  
Derya Yildirim ◽  
Turgay Aydogan ◽  
Nazan Kemaloglu ◽  
Kaan Orhan

Objectives: This study aimed to develop five different supervised machine learning (ML) classifier models using artificial intelligence (AI) techniques and to compare their performance for cervical vertebral maturation (CVM) analysis. A clinical decision support system (CDSS) was developed for more objective results. Methods: A total of 647 digital lateral cephalometric radiographs with visible C2, C3, C4 and C5 vertebrae were chosen. Newly developed software was used for manually labelling the samples, with the integrated CDSS developed by evaluation of 100 radiographs. On each radiograph, 26 points were marked, and the CDSS generated a suggestion according to the points and CVM analysis performed by the human observer. For each sample, 54 features were saved in text format and classified using logistic regression (LR), support vector machine, random forest, artificial neural network (ANN) and decision tree (DT) models. The weighted κ coefficient was used to evaluate the concordance of classification and expert visual evaluation results. Results: Among the CVM stage classifier models, the best result was achieved using the ANN model (κ = 0.926). Among cervical vertebrae morphology classifier models, the best result was achieved using the LR model (κ = 0.968) for the presence of concavity, and the DT model (κ = 0.949) for vertebral body shapes. Conclusions: This study has proposed ML models for CVM assessment on lateral cephalometric radiographs, which can be used for the prediction of cervical vertebrae morphology. Further studies should be done especially of forensic applications of AI models through CVM evaluations.


2019 ◽  
Vol 9 (3) ◽  
pp. 184 ◽  
Author(s):  
Meng-Leong How ◽  
Wei Loong David Hung

In science, technology, engineering, arts, and mathematics (STEAM) education, artificial intelligence (AI) analytics are useful as educational scaffolds to educe (draw out) the students’ AI-Thinking skills in the form of AI-assisted human-centric reasoning for the development of knowledge and competencies. This paper demonstrates how STEAM learners, rather than computer scientists, can use AI to predictively simulate how concrete mixture inputs might affect the output of compressive strength under different conditions (e.g., lack of water and/or cement, or different concrete compressive strengths required for art creations). To help STEAM learners envision how AI can assist them in human-centric reasoning, two AI-based approaches will be illustrated: first, a Naïve Bayes approach for supervised machine-learning of the dataset, which assumes no direct relations between the mixture components; and second, a semi-supervised Bayesian approach to machine-learn the same dataset for possible relations between the mixture components. These AI-based approaches enable controlled experiments to be conducted in-silico, where selected parameters could be held constant, while others could be changed to simulate hypothetical “what-if” scenarios. In applying AI to think discursively, AI-Thinking can be educed from the STEAM learners, thereby improving their AI literacy, which in turn enables them to ask better questions to solve problems.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Cédric Beaulac ◽  
Fabrice Larribe

We propose to use a supervised machine learning technique to track the location of a mobile agent in real time. Hidden Markov Models are used to build artificial intelligence that estimates the unknown position of a mobile target moving in a defined environment. This narrow artificial intelligence performs two distinct tasks. First, it provides real-time estimation of the mobile agent’s position using the forward algorithm. Second, it uses the Baum–Welch algorithm as a statistical learning tool to gain knowledge of the mobile target. Finally, an experimental environment is proposed, namely, a video game that we use to test our artificial intelligence. We present statistical and graphical results to illustrate the efficiency of our method.


2021 ◽  
Vol 10 (22) ◽  
pp. 5330
Author(s):  
Francesco Paolo Lo Muzio ◽  
Giacomo Rozzi ◽  
Stefano Rossi ◽  
Giovanni Battista Luciani ◽  
Ruben Foresti ◽  
...  

The human right ventricle is barely monitored during open-chest surgery due to the absence of intraoperative imaging techniques capable of elaborating its complex function. Accordingly, artificial intelligence could not be adopted for this specific task. We recently proposed a video-based approach for the real-time evaluation of the epicardial kinematics to support medical decisions. Here, we employed two supervised machine learning algorithms based on our technique to predict the patients’ outcomes before chest closure. Videos of the beating hearts were acquired before and after pulmonary valve replacement in twelve Tetralogy of Fallot patients and recordings were properly labeled as the “unhealthy” and “healthy” classes. We extracted frequency-domain-related features to train different supervised machine learning models and selected their best characteristics via 10-fold cross-validation and optimization processes. Decision surfaces were built to classify two additional patients having good and unfavorable clinical outcomes. The k-nearest neighbors and support vector machine showed the highest prediction accuracy; the patients’ class was identified with a true positive rate ≥95% and the decision surfaces correctly classified the additional patients in the “healthy” (good outcome) or “unhealthy” (unfavorable outcome) classes. We demonstrated that classifiers employed with our video-based technique may aid cardiac surgeons in decision making before chest closure.


2019 ◽  
Vol 87 (2) ◽  
pp. 27-29
Author(s):  
Meagan Wiederman

Artificial intelligence (AI) is the ability of any device to take an input, like that of its environment, and work to achieve a desired output. Some advancements in AI have focused n replicating the human brain in machinery. This is being made possible by the human connectome project: an initiative to map all the connections between neurons within the brain. A full replication of the thinking brain would inherently create something that could be argued to be a thinking machine. However, it is more interesting to question whether a non-biologically faithful AI could be considered as a thinking machine. Under Turing’s definition of ‘thinking’, a machine which can be mistaken as human when responding in writing from a “black box,” where they can not be viewed, can be said to pass for thinking. Backpropagation is an error minimizing algorithm to program AI for feature detection with no biological counterpart which is prevalent in AI. The recent success of backpropagation demonstrates that biological faithfulness is not required for deep learning or ‘thought’ in a machine. Backpropagation has been used in medical imaging compression algorithms and in pharmacological modelling.


2019 ◽  
Vol 8 (6) ◽  
pp. 872 ◽  
Author(s):  
Alam ◽  
Le ◽  
Lim ◽  
Chan ◽  
Yao

Artificial intelligence (AI) classification holds promise as a novel and affordable screening tool for clinical management of ocular diseases. Rural and underserved areas, which suffer from lack of access to experienced ophthalmologists may particularly benefit from this technology. Quantitative optical coherence tomography angiography (OCTA) imaging provides excellent capability to identify subtle vascular distortions, which are useful for classifying retinovascular diseases. However, application of AI for differentiation and classification of multiple eye diseases is not yet established. In this study, we demonstrate supervised machine learning based multi-task OCTA classification. We sought 1) to differentiate normal from diseased ocular conditions, 2) to differentiate different ocular disease conditions from each other, and 3) to stage the severity of each ocular condition. Quantitative OCTA features, including blood vessel tortuosity (BVT), blood vascular caliber (BVC), vessel perimeter index (VPI), blood vessel density (BVD), foveal avascular zone (FAZ) area (FAZ-A), and FAZ contour irregularity (FAZ-CI) were fully automatically extracted from the OCTA images. A stepwise backward elimination approach was employed to identify sensitive OCTA features and optimal-feature-combinations for the multi-task classification. For proof-of-concept demonstration, diabetic retinopathy (DR) and sickle cell retinopathy (SCR) were used to validate the supervised machine leaning classifier. The presented AI classification methodology is applicable and can be readily extended to other ocular diseases, holding promise to enable a mass-screening platform for clinical deployment and telemedicine.


Sign in / Sign up

Export Citation Format

Share Document