Particle Swarm Optimization as Applied to Electromagnetic Design Problems

2018 ◽  
Vol 9 (2) ◽  
pp. 47-82 ◽  
Author(s):  
Sotirios K. Goudos ◽  
Zaharias D. Zaharis ◽  
Konstantinos B. Baltzis

Particle swarm optimization (PSO) is a swarm intelligence algorithm inspired by the social behavior of birds flocking and fish schooling. Numerous PSO variants have been proposed in the literature for addressing different problem types. In this article, the authors apply different PSO variants to common design problems in electromagnetics. They apply the Inertia Weight PSO (IWPSO), the Constriction Factor PSO (CFPSO), and the Comprehensive Learning Particle Swarm Optimization (CLPSO) algorithms to real-valued optimization problems, i.e. microwave absorber design, and linear array synthesis. Moreover, the authors use discrete PSO optimizers such as the binary PSO (binPSO) and the Boolean PSO with a velocity mutation (BPSO-vm) in order to solve discrete-valued optimization problems, i.e. patch antenna design. Additionally, the authors apply and compare binPSO with different transfer functions to thinning array design problems. In the case of a multi-objective optimization problem, they apply two multi-objective PSO variants to dual-band base station antenna optimization for mobile communications. Namely, these are the Multi-Objective PSO (MOPSO) and the Multi-Objective PSO with Fitness Sharing (MOPSO-fs) algorithms. Finally, the authors conclude the paper by providing a discussion on future trends and the conclusion.

Author(s):  
Sotirios K. Goudos ◽  
Zaharias D. Zaharis ◽  
Konstantinos B. Baltzis

Particle Swarm Optimization (PSO) is an evolutionary optimization algorithm inspired by the social behavior of birds flocking and fish schooling. Numerous PSO variants have been proposed in the literature for addressing different problem types. In this chapter, the authors apply different PSO variants to common antenna and microwave design problems. The Inertia Weight PSO (IWPSO), the Constriction Factor PSO (CFPSO), and the Comprehensive Learning Particle Swarm Optimization (CLPSO) algorithms are applied to real-valued optimization problems. Correspondingly, discrete PSO optimizers such as the binary PSO (binPSO) and the Boolean PSO with velocity mutation (BPSO-vm) are used to solve discrete-valued optimization problems. In case of a multi-objective optimization problem, the authors apply two multi-objective PSO variants. Namely, these are the Multi-Objective PSO (MOPSO) and the Multi-Objective PSO with Fitness Sharing (MOPSO-fs) algorithms. The design examples presented here include microwave absorber design, linear array synthesis, patch antenna design, and dual-band base station antenna optimization. The conclusion and a discussion on future trends complete the chapter.


Author(s):  
Sotirios K. Goudos

Antenna and microwave design problems are, in general, multi-objective. Multi-objective Evolutionary Algorithms (MOEAs) are suitable optimization techniques for solving such problems. Particle Swarm Optimization (PSO) and Differential Evolution (DE) have received increased interest from the electromagnetics community. The fact that both algorithms can efficiently handle arbitrary optimization problems has made them popular for solving antenna and microwave design problems. This chapter presents three different state-of-the-art MOEAs based on PSO and DE, namely: the Multi-objective Particle Swarm Optimization (MOPSO), the Multi-objective Particle Swarm Optimization with fitness sharing (MOPSO-fs), and the Generalized Differential Evolution (GDE3). Their applications to different design cases from antenna and microwave problems are reported. These include microwave absorber, microwave filters and Yagi-uda antenna design. The algorithms are compared and evaluated against other evolutionary multi-objective algorithms like Nondominated Sorting Genetic Algorithm-II (NSGA-II). The results show the advantages of using each algorithm.


2009 ◽  
Vol 45 (3) ◽  
pp. 1522-1525 ◽  
Author(s):  
Sotirios K. Goudos ◽  
Zaharias D. Zaharis ◽  
Dimitra G. Kampitaki ◽  
Ioannis T. Rekanos ◽  
Costas S. Hilas

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4613
Author(s):  
Shah Fahad ◽  
Shiyou Yang ◽  
Rehan Ali Khan ◽  
Shafiullah Khan ◽  
Shoaib Ahmed Khan

Electromagnetic design problems are generally formulated as nonlinear programming problems with multimodal objective functions and continuous variables. These can be solved by either a deterministic or a stochastic optimization algorithm. Recently, many intelligent optimization algorithms, such as particle swarm optimization (PSO), genetic algorithm (GA) and artificial bee colony (ABC), have been proposed and applied to electromagnetic design problems with promising results. However, there is no universal algorithm which can be used to solve engineering design problems. In this paper, a stochastic smart quantum particle swarm optimization (SQPSO) algorithm is introduced. In the proposed SQPSO, to tackle the premature convergence problem in order to improve the global search ability, a smart particle and a memory archive are adopted instead of mutation operations. Moreover, to enhance the exploration searching ability, a new set of random numbers and control parameters are introduced. Experimental results validate that the adopted control policy in this work can achieve a good balance between exploration and exploitation. Finally, the SQPSO has been tested on well-known optimization benchmark functions and implemented on the electromagnetic TEAM workshop problem 22. The simulation result shows an outstanding capability of the proposed algorithm in speeding convergence compared to other algorithms.


2021 ◽  
Author(s):  
Ahlem Aboud ◽  
Nizar Rokbani ◽  
Seyedali Mirjalili ◽  
Abdulrahman M. Qahtani ◽  
Omar Almutiry ◽  
...  

<p>Multifactorial Optimization (MFO) and Evolutionary Transfer Optimization (ETO) are new optimization challenging paradigms for which the multi-Objective Particle Swarm Optimization system (MOPSO) may be interesting despite limitations. MOPSO has been widely used in static/dynamic multi-objective optimization problems, while its potentials for multi-task optimization are not completely unveiled. This paper proposes a new Distributed Multifactorial Particle Swarm Optimization algorithm (DMFPSO) for multi-task optimization. This new system has a distributed architecture on a set of sub-swarms that are dynamically constructed based on the number of optimization tasks affected by each particle skill factor. DMFPSO is designed to deal with the issues of handling convergence and diversity concepts separately. DMFPSO uses Beta function to provide two optimized profiles with a dynamic switching behaviour. The first profile, Beta-1, is used for the exploration which aims to explore the search space toward potential solutions, while the second Beta-2 function is used for convergence enhancement. This new system is tested on 36 benchmarks provided by the CEC’2021 Evolutionary Transfer Multi-Objective Optimization Competition. Comparatives with the state-of-the-art methods are done using the Inverted General Distance (IGD) and Mean Inverted General Distance (MIGD) metrics. Based on the MSS metric, this proposal has the best results on most tested problems.</p>


Author(s):  
Mohammad Reza Farmani ◽  
Jafar Roshanian ◽  
Meisam Babaie ◽  
Parviz M Zadeh

This article focuses on the efficient multi-objective particle swarm optimization algorithm to solve multidisciplinary design optimization problems. The objective is to extend the formulation of collaborative optimization which has been widely used to solve single-objective optimization problems. To examine the proposed structure, racecar design problem is taken as an example of application for three objective functions. In addition, a fuzzy decision maker is applied to select the best solution along the pareto front based on the defined criteria. The results are compared to the traditional optimization, and collaborative optimization formulations that do not use multi-objective particle swarm optimization. It is shown that the integration of multi-objective particle swarm optimization into collaborative optimization provides an efficient framework for design and analysis of hierarchical multidisciplinary design optimization problems.


2012 ◽  
Vol 3 (1) ◽  
pp. 1-29 ◽  
Author(s):  
Ashwin A. Kadkol ◽  
Gary G. Yen

Real-world optimization problems are often dynamic, multiple objective in nature with various constraints and uncertainties. This work proposes solving such problems by systematic segmentation via heuristic information accumulated through Cultural Algorithms. The problem is tackled by maintaining 1) feasible and infeasible best solutions and their fitness and constraint violations in the Situational Space, 2) objective space bounds for the search in the Normative Space, 3) objective space crowding information in the Topographic Space, and 4) function sensitivity and relocation offsets (to reuse available information on optima upon change of environments) in the Historical Space of a cultural framework. The information is used to vary the flight parameters of the Particle Swarm Optimization, to generate newer individuals and to better track dynamic and multiple optima with constraints. The proposed algorithm is validated on three numerical optimization problems. As a practical application case study that is computationally intensive and complex, parameter tuning of a PID (Proportional–Integral–Derivative) controller for plants with transfer functions that vary with time and imposed with robust optimization criteria has been used to demonstrate the effectiveness and efficiency of the proposed design.


2018 ◽  
Vol 9 (4) ◽  
pp. 71-96 ◽  
Author(s):  
Swapnil Prakash Kapse ◽  
Shankar Krishnapillai

This article demonstrates the implementation of a novel local search approach based on Utopia point guided search, thus improving the exploration ability of multi- objective Particle Swarm Optimization. This strategy searches for best particles based on the criteria of seeking solutions closer to the Utopia point, thus improving the convergence to the Pareto-optimal front. The elite non-dominated selected particles are stored in an archive and updated at every iteration based on least crowding distance criteria. The leader is chosen among the candidates in the archive using the same guided search. From the simulation results based on many benchmark tests, the new algorithm gives better convergence and diversity when compared to existing several algorithms such as NSGA-II, CMOPSO, SMPSO, PSNS, DE+MOPSO and AMALGAM. Finally, the proposed algorithm is used to solve mechanical design based multi-objective optimization problems from the literature, where it shows the same advantages.


2012 ◽  
Vol 201-202 ◽  
pp. 283-286
Author(s):  
Chen Yang Chang ◽  
Jing Mei Zhai ◽  
Qin Xiang Xia ◽  
Bin Cai

Aiming at addressing optimization problems of complex mathematical model with large amount of calculation, a method based on support vector machine and particle swarm optimization for structure optimization design was proposed. Support Vector Machine (SVM) is a powerful computational tool for problems with nonlinearity and could establish approximate structures model. Grey relational analysis was utilized to calculate the coefficient between target parameters in order to change the multi-objective optimization problem into a single objective one. The reconstructed models were solved by Particle Swam Optimization (PSO) algorithm. A slip cover at medical treatment was adopted as an example to illustrate this methodology. Appropriate design parameters were selected through the orthogonal experiment combined with ANSYS. The results show this methodology is accurate and feasible, which provides an effective strategy to solve complex optimization problems.


Sign in / Sign up

Export Citation Format

Share Document