Patient-Centered Clinical Trials Decision Support using Linked Open Data

Author(s):  
Bonnie MacKellar ◽  
Christina Schweikert ◽  
Soon Ae Chun

Patients often want to participate in relevant clinical trials for new or more effective alternative treatments. The clinical search system made available by the NIH is a step forward to support the patient's decision making, but, it is difficult to use and requires the patient to sift through lengthy text descriptions for relevant information. In addition, patients deciding whether to pursue a given trial often want more information, such as drug information. The authors' overall aim is to develop an intelligent patient-centered clinical trial decision support system. Their approach is to integrate Open Data sources related to clinical trials using the Semantic Web's Linked Data framework. The linked data representation, in terms of RDF triples, allows the development of a clinical trial knowledge base that includes entities from different open data sources and relationships among entities. The authors consider Open Data sources such as clinical trials provided by NIH as well as the drug side effects dataset SIDER. The authors use UMLS (Unified Medical Language System) to provide consistent semantics and ontological knowledge for clinical trial related entities and terms. The authors' semantic approach is a step toward a cognitive system that provides not only patient-centered integrated data search but also allows automated reasoning in search, analysis and decision making using the semantic relationships embedded in the Linked data. The authors present their integrated clinical trial knowledge base development and a prototype, patient-centered Clinical Trial Decision Support System that include capabilities of semantic search and query with reasoning ability, and semantic-link browsing where an exploration of one concept leads to other concepts easily via links which can provide visual search for the end users.

Author(s):  
Bonnie MacKellar ◽  
Christina Schweikert ◽  
Soon Ae Chun

Patients often want to participate in relevant clinical trials for new or more effective alternative treatments. The clinical search system made available by the NIH is a step forward to support the patient's decision making, but, it is difficult to use and requires the patient to sift through lengthy text descriptions for relevant information. In addition, patients deciding whether to pursue a given trial often want more information, such as drug information. The authors' overall aim is to develop an intelligent patient-centered clinical trial decision support system. Their approach is to integrate Open Data sources related to clinical trials using the Semantic Web's Linked Data framework. The linked data representation, in terms of RDF triples, allows the development of a clinical trial knowledge base that includes entities from different open data sources and relationships among entities. The authors consider Open Data sources such as clinical trials provided by NIH as well as the drug side effects dataset SIDER. The authors use UMLS (Unified Medical Language System) to provide consistent semantics and ontological knowledge for clinical trial related entities and terms. The authors' semantic approach is a step toward a cognitive system that provides not only patient-centered integrated data search but also allows automated reasoning in search, analysis and decision making using the semantic relationships embedded in the Linked data. The authors present their integrated clinical trial knowledge base development and a prototype, patient-centered Clinical Trial Decision Support System that include capabilities of semantic search and query with reasoning ability, and semantic-link browsing where an exploration of one concept leads to other concepts easily via links which can provide visual search for the end users.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fraser Philp ◽  
Alice Faux-Nightingale ◽  
Sandra Woolley ◽  
Ed de Quincey ◽  
Anand Pandyan

Abstract Background Currently the diagnosis of shoulder instability, particularly in children, is difficult and can take time. These diagnostic delays can lead to poorer outcome and long-term complications. A Diagnostic Decision Support System (DDSS) has the potential to reduce time to diagnosis and improve outcomes for patients. The aim of this study was to develop a concept map for a future DDSS in shoulder instability. Methods A modified nominal focus group technique, involving three clinical vignettes, was used to elicit physiotherapists decision-making processes. Results Twenty-five physiotherapists, (18F:7 M) from four separate clinical sites participated. The themes identified related to ‘Variability in diagnostic processes and lack of standardised practice’ and ‘Knowledge and attitudes towards novel technologies for facilitating assessment and clinical decision making’. Conclusion No common structured approach towards assessment and diagnosis was identified. Lack of knowledge, perceived usefulness, access and cost were identified as barriers to adoption of new technology. Based on the information elicited a conceptual design of a future DDSS has been proposed. Work to develop a systematic approach to assessment, classification and diagnosis is now proposed. Trial Registraty This was not a clinical trial and so no clinical trial registry is needed.


2020 ◽  
Author(s):  
Fraser Philp ◽  
Alice Faux-Nightingale ◽  
Sandra Wooley ◽  
Ed De Quincey ◽  
Anand Pandyan

Abstract Background: Currently the diagnosis of shoulder instability, particularly in children, is difficult and can take time. These diagnostic delays can lead to poorer outcome and long-term complications. A Diagnostic Decision Support System (DDSS) has the potential to reduce time to diagnosis improve outcomes for patients. The aim of this study was to develop a concept map for a future DDSS in shoulder instability.Methods: A modified nominal focus group technique, involving three clinical vignettes was used to elicit information physiotherapists decision-making processes.Results: Twenty-five physiotherapists, (18F:7M) from four separate clinical sites participated. The themes identified related to ‘Variability in diagnostic processes and lack of standardised practice’ and ‘Knowledge and attitudes towards novel technologies for facilitating assessment and clinical decision making’. Conclusion: No common structured approach towards assessment and diagnosis was identified. Lack of knowledge, perceived usefulness, access and cost were identified as barriers to adoption of new technology. Based on the information elicited a conceptual design of a future DDSS has been proposed. Work to develop a systematic approach to assessment, classification and diagnosis is now proposed.Trial Registration: This was not a clinical trial and so no clinical trial registry is needed.


Author(s):  
Lidia K Simanjuntak ◽  
Tessa Y M Sihite ◽  
Mesran Mesran ◽  
Nuning Kurniasih ◽  
Yuhandri Yuhandri

All colleges each year organize the selection of new admissions. Acceptance of prospective students in universities as education providers is done by selecting prospective students based on achievement in school and college entrance selection. To select the best student candidates based on predetermined criteria, then use Multi-Criteria Decision Making (MCDM) or commonly called decision support system. One method in MCDM is the Elimination Et Choix Traduisant la Reality (ELECTRE). The ELECTRE method is the best method of action selection. The ELECTRE method to obtain the best alternative by eliminating alternative that do not fit the criteria and can be applied to the decision SNMPTN invitation path.


Author(s):  
Liza Handayani ◽  
Muhammad Syahrizal ◽  
Kennedi Tampubolon

The head of the environment is an extension of the head of the village head in assisting or providing services to the community both in the administration of administration in the village and to other problems. It is natural for a kepling to be appreciated for their performance during their special tenure in the kecamatan field area. Previously, the selection of a dipling in a sub-district was very inefficient and seemed unfair for this exemplary selection to use a system to produce an accurate value, and no intentional element. To overcome the process of selecting an exemplary kepling that experiences these obstacles by using an application called a Decision Support System. Decision Support System (SPK) is a system that can solve a problem, and this system is also assisted with several methods, namely the Rank Order Centroid (ROC) method that can assign weight values to each of the criteria based on their priority level. And to do the ranking or determine an exemplary set using the Additive Ratio Assessment (ARAS) method, this method provides decision making that takes decisions based on ranking or the highest value.Keywords: Head of Medan Area Subdistrict, SPK, Centroid Rank Order, Additive Ratio Assessment (ARAS).


Author(s):  
Fajar Syahputra ◽  
Mesran Mesran ◽  
Ikhwan Lubis ◽  
Agus Perdana Windarto

The teacher is a major milestone in the world of education, the ability and achievement of students cannot be separated from the role of a teacher in teaching and guiding students. Based on the Law of the Republic of Indonesia No. 14 of 2005 concerning Teachers and Lecturers, in Article 1 explained that teachers are professional educators with the main task of educating, teaching, guiding, directing, training, evaluating, and evaluating students in early childhood education through formal education, basic education and education medium. Whereas in Article 4 of the Act, it is explained that the position of teachers as professionals serves to enhance the dignity and role of teachers as learning agents to function to improve the quality of national education.Decision making is an election process, among various alternatives that aim to meet one or several targets. The decision-making system has 4 phases, namely intelligence, design, choice and implementation. These phases are the basis for decision making, which ends with a recommendation.The Preferences Selection Index (PSI) method is a rarely used decision support system method. This method is a method developed by stevanie and Bhatt (2010) to solve the Multi Criteria Decision Making (MCDM). With the right consideration, this method can be one of the tools to determine policies in decision-making systems, especially the selection of outstanding teachers. Determination of policies taken as a basis for decision making, must use criteria that can be defined clearly and objectively.Keywords: Decision Support System, PSI, Selection of Achieving Teachers


Author(s):  
Soraya Rahma Hayati ◽  
Mesran Mesran ◽  
Taronisokhi Zebua ◽  
Heri Nurdiyanto ◽  
Khasanah Khasanah

The reception of journalists at the Waspada Daily Medan always went through several rigorous selections before being determined to be accepted as journalists at the Waspada Medan Daily. There are several criteria that must be possessed by each participant as a condition for becoming a journalist in the Daily Alert Medan. To get the best participants, the Waspada Medan Daily needed a decision support system. Decision Support Systems (SPK) are part of computer-based information systems (including knowledge-based systems (knowledge management)) that are used to support decision making within an organization or company. Decision support systems provide a semitructured decision, where no one knows exactly how the decision should be made. In this study the authors applied the VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) as the method to be applied in the decision support system application. The VIKOR method is part of the Multi-Attibut Decision Making (MADM) Concept, which requires normalization in its calculations. The expected results in this study can obtain maximum decisions.Keywords: Journalist Acceptance, Decision Support System, VIKOR


2016 ◽  
Vol 7 (1) ◽  
pp. 12-18
Author(s):  
Joko Haryanto ◽  
Seng Hansun

This paper describes the development of decision support system application to assist students who want to enter college so that no one choose the majors incorrectly. This application uses fuzzy logic method because fuzzy logic is very flexible in data which are vague and can be represented as a linguistic variable. The purpose of this application is to assist students to choose available majors at University Multimedia Nusantara which are appropriate with his/her capabilities. This application accepts five kinds of input values i.e. Mathematics, Indonesian, English, Physics, and TIK. Received input will be processed by the calculation of the system for decision-making and the application will generate output that shows how great a match for each majors. With this application, prospective students can find out where the majors that match his/her capabilities. This application has ninety nine percentage of match result accuracy. Index Terms—fuzzy logic, decision support system, UMN, selection of major


2020 ◽  
Author(s):  
Avishek Choudhury

UNSTRUCTURED Objective: The potential benefits of artificial intelligence based decision support system (AI-DSS) from a theoretical perspective are well documented and perceived by researchers but there is a lack of evidence showing its influence on routine clinical practice and how its perceived by care providers. Since the effectiveness of AI systems depends on data quality, implementation, and interpretation. The purpose of this literature review is to analyze the effectiveness of AI-DSS in clinical setting and understand its influence on clinician’s decision making outcome. Materials and Methods: This review protocol follows the Preferred Reporting Items for Systematic Reviews and Meta- Analyses reporting guidelines. Literature will be identified using a multi-database search strategy developed in consultation with a librarian. The proposed screening process consists of a title and abstract scan, followed by a full-text review by two reviewers to determine the eligibility of articles. Studies outlining application of AI based decision support system in a clinical setting and its impact on clinician’s decision making, will be included. A tabular synthesis of the general study details will be provided, as well as a narrative synthesis of the extracted data, organised into themes. Studies solely reporting AI accuracy an but not implemented in a clinical setting to measure its influence on clinical decision making were excluded from further review. Results: We identified 8 eligible studies that implemented AI-DSS in a clinical setting to facilitate decisions concerning prostate cancer, post traumatic stress disorder, cardiac ailment, back pain, and others. Five (62.50%) out of 8 studies reported positive outcome of AI-DSS. Conclusion: The systematic review indicated that AI-enabled decision support systems, when implemented in a clinical setting and used by clinicians might not ensure enhanced decision making. However, there are very limited studies to confirm the claim that AI based decision support system can uplift clinicians decision making abilities.


2021 ◽  
Vol 1933 (1) ◽  
pp. 012017
Author(s):  
Arman Jayady ◽  
Tonny Hidayat ◽  
Erni Qomariyah ◽  
BB Suriyani ◽  
Muh. Najib Husain ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document