A Quantitative Approach to Measure Webpage Aesthetics

2020 ◽  
Vol 16 (2) ◽  
pp. 53-68
Author(s):  
Ranjan Maity ◽  
Samit Bhattacharya

Aesthetics measurement is important in determining and improving the usability of a webpage. Wireframe models, the collection of the rectangular objects, can approximate the size and positions of the different webpage elements. The positional geometry of these objects is primarily responsible for determining aesthetics as shown in studies. In this work, the authors propose a computational model for predicting webpage aesthetics based on the positional geometry features. In this study, the authors found that ten out of the thirteen reported features are statistically significant for webpage aesthetics. Using these ten features, the authors developed a computational model for webpage aesthetics prediction. The model works on the basis of support vector regression. The authors rated the wireframe models of 209 webpages by 150 participants. The average users' ratings and the ten significant features' values were used to train and test the aesthetics prediction model. Five-fold cross-validation technique shows the model can predict aesthetics with a Root Mean Square Error (RMSE) of only 0.42.

2021 ◽  
Author(s):  
Naeimah Mamat ◽  
Firdaus Mohamad Hamzah ◽  
Othman Jaafar

AbstractWater quality analysis is an important step in water resources management and needs to be managed efficiently to control any pollution that may affect the ecosystem and to ensure the environmental standards are being met. The development of water quality prediction model is an important step towards better water quality management of rivers. The objective of this work is to utilize a hybrid of Support Vector Regression (SVR) modelling and K-fold cross-validation as a tool for WQI prediction. According to Department of Environment (DOE) Malaysia, a standard Water Quality Index (WQI) is a function of six water quality parameters, namely Ammoniacal Nitrogen (AN), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Dissolved Oxygen (DO), pH, and Suspended Solids (SS). In this research, Support Vector Regression (SVR) model is combined with K-fold Cross Validation (CV) method to predict WQI in Langat River, Kajang. Two monitoring stations i.e., L15 and L04 have been monitored monthly for ten years as a case study. A series of results were produced to select the final model namely Kernel Function performance, Hyperparameter Kernel value, K-fold CV value and sets of prediction model value, considering all of them undergone training and testing phases. It is found that SVR model i.e., Nu-RBF combined with K-fold CV i.e., 5-fold has successfully predicted WQI with efficient cost and timely manner. As a conclusion, SVR model and K-fold CV method are very powerful tools in statistical analysis and can be used not limited in water quality application only but in any engineering application.


2018 ◽  
Vol 9 (1) ◽  
pp. 565-578
Author(s):  
Ade Surya Budiman ◽  
Xanty Adhi Parandani

Data yang dikumpulkan dalam proses seleksi penerima beasiswa memiliki variabel berbentuk nominal dan numerik serta terdiri atas banyak item, sehingga diperlukan metode yang tepat untuk melakukan klasifikasi data secara akurat dan memastikan validitas data yang dipergunakan dalam penilaian penerima beasiswa. Dalam penelitian ini dilakukan pengujian terhadap data dengan dua metode, yaitu (i) Integrasi Membership Function dengan Algoritma C4.5, dan (ii) Penerapan Algoritma C4.5 secara langsung pada data. Pengujian dilakukan dengan jenis 10-fold cross validation dan pengujian kebenaran instances (correctly/incorrectly). Dari hasil perhitungan dan pengujian diperoleh nilai Mean Square Error (MAE) dan Root Mean Square Error (RMSE) yang lebih rendah pada metode Integrasi Membership Function dengan Algoritma C4.5, yaitu masing-masing 0,132 (MAE) dan 0,2714 (RMSE). Untuk pengujian Classified Instances, diperoleh persentase kebenaran (correctly) yang lebih tinggi pada metode Integrasi Membership Function dengan Algoritma C4.5, yaitu sebesar 92,8571%.Kata kunci: klasifikasi data, validitas data, membership function, algoritma C4.5, seleksi beasiswa.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1166
Author(s):  
Bashir Musa ◽  
Nasser Yimen ◽  
Sani Isah Abba ◽  
Humphrey Hugh Adun ◽  
Mustafa Dagbasi

The prediction accuracy of support vector regression (SVR) is highly influenced by a kernel function. However, its performance suffers on large datasets, and this could be attributed to the computational limitations of kernel learning. To tackle this problem, this paper combines SVR with the emerging Harris hawks optimization (HHO) and particle swarm optimization (PSO) algorithms to form two hybrid SVR algorithms, SVR-HHO and SVR-PSO. Both the two proposed algorithms and traditional SVR were applied to load forecasting in four different states of Nigeria. The correlation coefficient (R), coefficient of determination (R2), mean square error (MSE), root mean square error (RMSE), and mean absolute percentage error (MAPE) were used as indicators to evaluate the prediction accuracy of the algorithms. The results reveal that there is an increase in performance for both SVR-HHO and SVR-PSO over traditional SVR. SVR-HHO has the highest R2 values of 0.9951, 0.8963, 0.9951, and 0.9313, the lowest MSE values of 0.0002, 0.0070, 0.0002, and 0.0080, and the lowest MAPE values of 0.1311, 0.1452, 0.0599, and 0.1817, respectively, for Kano, Abuja, Niger, and Lagos State. The results of SVR-HHO also prove more advantageous over SVR-PSO in all the states concerning load forecasting skills. This paper also designed a hybrid renewable energy system (HRES) that consists of solar photovoltaic (PV) panels, wind turbines, and batteries. As inputs, the system used solar radiation, temperature, wind speed, and the predicted load demands by SVR-HHO in all the states. The system was optimized by using the PSO algorithm to obtain the optimal configuration of the HRES that will satisfy all constraints at the minimum cost.


2013 ◽  
Vol 807-809 ◽  
pp. 1967-1971
Author(s):  
Yan Bai ◽  
Xiao Yan Duan ◽  
Hai Yan Gong ◽  
Cai Xia Xie ◽  
Zhi Hong Chen ◽  
...  

In this paper, the content of forsythoside A and ethanol-extract were rapidly determinated by near-infrared reflectance spectroscopy (NIRS). 85 samples of Forsythiae Fructus harvested in Luoyang from July to September in 2012 were divided into a calibration set (75 samples) and a validation set (10 samples). In combination with the partical least square (PLS), the quantitative calibration models of forsythoside A and ethanol-extract were established. The correlation coefficient of cross-validation (R2) was 0.98247 and 0.97214 for forsythoside A and ethanol-extract, the root-mean-square error of calibration (RMSEC) was 0.184 and 0.570, the root-mean-square error of cross-validation (RMSECV) was 0.81736 and 0.36656. The validation set were used to evaluate the performance of the models, the root-mean-square error of prediction (RMSEP) was 0.221 and 0.518. The results indicated that it was feasible to determine the content of forsythoside A and ethanol-extract in Forsythiae Fructus by near-infrared spectroscopy.


Mekatronika ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 27-31
Author(s):  
Ken-ji Ee ◽  
Ahmad Fakhri Bin Ab. Nasir ◽  
Anwar P. P. Abdul Majeed ◽  
Mohd Azraai Mohd Razman ◽  
Nur Hafieza Ismail

The animal classification system is a technology to classify the animal class (type) automatically and useful in many applications. There are many types of learning models applied to this technology recently. Nonetheless, it is worth noting that the extraction of the features and the classification of the animal features is non-trivial, particularly in the deep learning approach for a successful animal classification system. The use of Transfer Learning (TL) has been demonstrated to be a powerful tool in the extraction of essential features. However, the employment of such a method towards animal classification applications are somewhat limited. The present study aims to determine a suitable TL-conventional classifier pipeline for animal classification. The VGG16 and VGG19 were used in extracting features and then coupled with either k-Nearest Neighbour (k-NN) or Support Vector Machine (SVM) classifier. Prior to that, a total of 4000 images were gathered consisting of a total of five classes which are cows, goats, buffalos, dogs, and cats. The data was split into the ratio of 80:20 for train and test. The classifiers hyper parameters are tuned by the Grids Search approach that utilises the five-fold cross-validation technique. It was demonstrated from the study that the best TL pipeline identified is the VGG16 along with an optimised SVM, as it was able to yield an average classification accuracy of 0.975. The findings of the present investigation could facilitate animal classification application, i.e. for monitoring animals in wildlife.


2019 ◽  
Vol 27 (3) ◽  
pp. 220-231
Author(s):  
Emmanuel Amomba Seweh ◽  
Zou Xiaobo ◽  
Feng Tao ◽  
Shi Jiachen ◽  
Haroon Elrasheid Tahir ◽  
...  

A comparative study of three chemometric algorithms combined with NIR spectroscopy with the aim of determining the best performing algorithm for quantitative prediction of iodine value, saponification value, free fatty acids content, and peroxide values of unrefined shea butter. Multivariate calibrations were developed for each parameter using supervised partial least squares, interval partial least squares, and genetic-algorithm partial least square regression methods to establish a linear relationship between standard reference and the Fourier transformed-near infrared predicted. Results showed that genetic-algorithm partial least square models were superior in predicting iodine value and saponification value while partial least squares was excellent in predicting free fatty acids content and peroxide values. The nine-factor genetic-algorithm partial least square iodine value calibration model for predicting iodine value yielded excellent ( R2 cal = 0.97), ( R2 val = 0.97), low (root mean square error of cross-validation = 0.26), low (root mean square error of Prediction = 0.23), and (ratio of performance to deviation = 6.41); for saponification value, the nine-factor genetic-algorithm partial least square saponification value calibration model had excellent R2 cal (0.97), R2 val (0.99); low root mean square error of cross-validation (0.73), low root mean square error of Prediction (0.53), and (ratio of performance to deviation = 8.27); while for free fatty acids, the 11-factor partial least square free fatty acids produced very high R2 cal (0.97) and R2 val (0.97) with very low root mean square error of cross-validation (0.03), low root mean square error of Prediction (0.04) and (ratio of performance to deviation = 5.30) and finally for peroxide values, the 11-factor partial least square peroxide values calibration model obtained excellent R2 cal (0.96) and R2val (0.98) with low root mean square error of cross-validation (0.05), low root mean square error of Prediction (0.04), and (ratio of performance to deviation = 5.86). The built models were accurate and robust and can be reliably applied in developing a handheld quality detection device for screening, quality control checks, and prediction of shea butter quality on-site.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Fujun Ma ◽  
Fanghao Song ◽  
Yan Liu ◽  
Jiahui Niu

The fatigue energy consumption of independent gestures can be obtained by calculating the power spectrum of surface electromyography (sEMG) signals. The existing research studies focus on the fatigue of independent gestures, while the research studies on integrated gestures are few. However, the actual gesture operation mode is usually integrated by multiple independent gestures, so the fatigue degree of integrated gestures can be predicted by training neural network of independent gestures. Three natural gestures including browsing information, playing games, and typing are divided into nine independent gestures in this paper, and the predicted model is established and trained by calculating the energy consumption of independent gestures. The artificial neural networks (ANNs) including backpropagation (BP) neural network, recurrent neural network (RNN), and long short-term memory (LSTM) are used to predict the fatigue of gesture. The support vector machine (SVM) is used to assist verification. Mean square error (MSE), root mean square error (RMSE), and mean absolute error (MAE) are utilized to evaluate the optimal prediction model. Furthermore, the different datasets of the processed sEMG signal and its decomposed wavelet coefficients are trained, respectively, and the changes of error functions of them are compared. The experimental results show that LSTM model is more suitable for gesture fatigue prediction. The processed sEMG signals are appropriate for using as the training set the fatigue degree of one-handed gesture. It is better to use wavelet decomposition coefficients as datasets to predict the high-dimensional sEMG signals of two-handed gestures. The experimental results can be applied to predict the fatigue degree of complex human-machine interactive gestures, help to avoid unreasonable gestures, and improve the user’s interactive experience.


2020 ◽  
Vol 12 (11) ◽  
pp. 1814
Author(s):  
Phamchimai Phan ◽  
Nengcheng Chen ◽  
Lei Xu ◽  
Zeqiang Chen

Tea is a cash crop that improves the quality of life for people in the Tanuyen District of Laichau Province, Vietnam. Tea yield, however, has stagnated in recent years, due to changes in temperature, precipitation, the age of the tea bushes, and diseases. Developing an approach for monitoring tea bushes by remote sensing and Geographic Information Systems (GIS) might be a way to alleviate this problem. Using multi-temporal remote sensing data, the paper details an investigation of the changes in tea health and yield forecasting through the normalized difference vegetation index (NDVI). In this study, we used NDVI as a support tool to demonstrate the temporal and spatial changes in NDVI through the extract tea NDVI value and calculate the mean NDVI value. The results of the study showed that the minimum NDVI value was 0.42 during January 2013 and February 2015 and 2016. The maximum NDVI value was in August 2015 and June 2017. We indicate that the linear relationship between NDVI value and mean temperature was strong with R 2 = 0.79 Our results confirm that the combination of meteorological data and NDVI data can achieve a high performance of yield prediction. Three models to predict tea yield were conducted: support vector machine (SVM), random forest (RF), and the traditional linear regression model (TLRM). For period 2009 to 2018, the prediction tea yield by the RF model was the best with a R 2 = 0.73 , by SVM it was 0.66, and 0.57 with the TLRM. Three evaluation indicators were used to consider accuracy: the coefficient of determination ( R 2 ), root-mean-square error (RMSE), and percentage error of tea yield (PETY). The highest accuracy for the three models was in 2015 with a R 2 ≥ 0.87, RMSE < 50 kg/ha, and PETY less 3% error. In the other years, the prediction accuracy was higher in the SVM and RF models. Meanwhile, the RF algorithm was better than PETY (≤10%) and the root mean square error for this algorithm was significantly less (≤80 kg/ha). RMSE and PETY showed relatively good values in the TLRM model with a RMSE from 80 to 100 kg/ha and a PETY from 8 to 15%.


2017 ◽  
Vol 71 (11) ◽  
pp. 2427-2436 ◽  
Author(s):  
Mi Lei ◽  
Long Chen ◽  
Bisheng Huang ◽  
Keli Chen

In this research paper, a fast, quantitative, analytical model for magnesium oxide (MgO) content in medicinal mineral talcum was explored based on near-infrared (NIR) spectroscopy. MgO content in each sample was determined by ethylenediaminetetraacetic acid (EDTA) titration and taken as reference value of NIR spectroscopy, and then a variety of processing methods of spectra data were compared to establish a good NIR spectroscopy model. To start, 50 batches of talcum samples were categorized into training set and test set using the Kennard–Stone (K-S) algorithm. In a partial least squares regression (PLSR) model, both leave-one-out cross-validation (LOOCV) and training set validation (TSV) were used to screen spectrum preprocessing methods from multiplicative scatter correction (MSC), and finally the standard normal variate transformation (SNV) was chosen as the optimal pretreatment method. The modeling spectrum bands and ranks were optimized using PLSR method, and the characteristic spectrum ranges were determined as 11995–10664, 7991–6661, and 4326–3999 cm−1, with four optimal ranks. In the support vector machine (SVM) model, the radical basis function (RBF) kernel function was used. Moreover, the full spectrum data of samples pretreated with SNV, the characteristic spectrum data screened using synergy interval partial least squares (SiPLS), and the scoring data of the first four ranks obtained by a partial least squares (PLS) dimension reduction of characteristic spectrum were taken as input variables of SVM, and the MgO content reference values of various sample were taken as output values. In addition, the SVM model internal parameters were optimized using the grid optimization method (GRID), particle swarm optimization (PSO), and genetic algorithm (GA) so that the optimal C and g-values were determined and the validation model was established. By comprehensively comparing the validation effects of different models, it can be concluded that the scoring data of the first four ranks obtained by PLS dimension reduction of characteristic spectrum were taken as input variables of SVM, and the PLS-SVM regression model established using GRID was the optimal NIR spectroscopy quantitative model of talc. This PLS-SVM regression model (rank = 4) measured that the MgO content of talcum was in the range of 17.42–33.22%, with root mean square error of cross validation (RMSECV) of 2.2127%, root mean square error of calibration (RMSEC) of 0.6057%, and root mean square error of prediction (RMSEP) of 1.2901%. This model showed high accuracy and strong prediction capacity, which can be used for rapid prediction of MgO content in talcum.


2010 ◽  
Vol 16 (2) ◽  
pp. 187-193 ◽  
Author(s):  
Yang Meiyan ◽  
Li Jing ◽  
Nie Shaoping ◽  
Hu Jielun ◽  
Yu Qiang ◽  
...  

Near-infrared spectroscopy (NIRS) was used as a rapid and nondestructive method to determine the content of docosahexaenoic acid (DHA) in powdered oil samples. A total of 82 samples were scanned in the diffuse reflectance mode by Nicolet 5700 FTIR spectrometer and the reference values for DHA was measured by gas chromatography. Calibration equations were developed using partial least-squares regression (PLS) with internal cross-validation. Samples were split in two sets, one set used as calibration (n = 66) whereas the remaining samples (n=16) were used as validation set. Two mathematical treatments (first and second derivative), none (log(1/R)) and standard normal variate as scatter corrections and Savitzky—Golay smoothing were explored. To decide upon the number of PLS factors included in the PLS model, the model with the lowest root mean square error of cross-validation (RMSECV=0.44) for the validation set is chosen. The correlation coefficient (r) between the predicted and the reference results which used as an evaluation parameter for the models is 0.968. The root mean square error of prediction of the final model is 0.59. The results reported in this article demonstrate that FT-NIR measurements can serve as a rapid method to determine DHA in powdered oil.


Sign in / Sign up

Export Citation Format

Share Document