scholarly journals sEMG-Based Neural Network Prediction Model Selection of Gesture Fatigue and Dataset Optimization

2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Fujun Ma ◽  
Fanghao Song ◽  
Yan Liu ◽  
Jiahui Niu

The fatigue energy consumption of independent gestures can be obtained by calculating the power spectrum of surface electromyography (sEMG) signals. The existing research studies focus on the fatigue of independent gestures, while the research studies on integrated gestures are few. However, the actual gesture operation mode is usually integrated by multiple independent gestures, so the fatigue degree of integrated gestures can be predicted by training neural network of independent gestures. Three natural gestures including browsing information, playing games, and typing are divided into nine independent gestures in this paper, and the predicted model is established and trained by calculating the energy consumption of independent gestures. The artificial neural networks (ANNs) including backpropagation (BP) neural network, recurrent neural network (RNN), and long short-term memory (LSTM) are used to predict the fatigue of gesture. The support vector machine (SVM) is used to assist verification. Mean square error (MSE), root mean square error (RMSE), and mean absolute error (MAE) are utilized to evaluate the optimal prediction model. Furthermore, the different datasets of the processed sEMG signal and its decomposed wavelet coefficients are trained, respectively, and the changes of error functions of them are compared. The experimental results show that LSTM model is more suitable for gesture fatigue prediction. The processed sEMG signals are appropriate for using as the training set the fatigue degree of one-handed gesture. It is better to use wavelet decomposition coefficients as datasets to predict the high-dimensional sEMG signals of two-handed gestures. The experimental results can be applied to predict the fatigue degree of complex human-machine interactive gestures, help to avoid unreasonable gestures, and improve the user’s interactive experience.

Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1341
Author(s):  
Yuju Ma ◽  
Liyuan Zuo ◽  
Jiangbo Gao ◽  
Qiang Liu ◽  
Lulu Liu

As a link for energy transfer between the land and atmosphere in the terrestrial ecosystem, karst vegetation plays an important role. Karst vegetation is not only affected by environmental factors but also by intense human activities. The nonlinear characteristics of vegetation growth are induced by the interaction mechanism of these factors. Previous studies of this relationship were not comprehensive, and it is necessary to further explore it using a suitable method. In this study, we selected climate, human activities, topography, and soil texture as the response factors; a nonlinear relationship model between the karst normalized difference vegetation index (NDVI) and these factors was established by applying a back propagation neural network (BPNN), a radial basis function neural network (RBFNN), the random forest (RF) algorithm, and support vector regression (SVR); and then, the karst NDVI was predicted. The coefficient of determination (R2), mean square error (MSE), root mean square error (RMSE), and mean absolute percentage error (MAPE) of the obtained results were calculated, and the mean R2 values of the BPNN, RBFNN, RF, and SVR models were determined to be 0.77, 0.86, 0.89, and 0.91, respectively. Compared with the BPNN, RBFNN, and RF models, the SVR model had the lowest errors, with mean MSE, RMSE, and MAPE values of 0.001, 0.02, and 2.77, respectively. The results show that the BPNN, RBFNN, RF, and SVR models are within acceptable ranges for karst NDVI prediction, but the overall performance of the SVR model is the best, and it is more suitable for karst vegetation prediction.


Author(s):  
Pablo Martínez Fernández ◽  
Pablo Salvador Zuriaga ◽  
Ignacio Villalba Sanchís ◽  
Ricardo Insa Franco

This paper presents the application of machine learning systems based on neural networks to model the energy consumption of electric metro trains, as a first step in a research project that aims to optimise the energy consumed for traction in the Metro Network of Valencia (Spain). An experimental dataset was gathered and used for training. Four input variables (train speed and acceleration, track slope and curvature) and one output variable (traction power) were considered. The fully trained neural network shows good agreement with the target data, with relative mean square error around 21%. Additional tests with independent datasets also give good results (relative mean square error = 16%). The neural network has been applied to five simple case studies to assess its performance – and has proven to correctly model basic consumption trends (e.g. the influence of the slope) – and to properly reproduce acceleration, holding and braking, although it tends to slightly underestimate the energy regenerated during braking. Overall, the neural network provides a consistent estimation of traction power and the global energy consumption of metro trains, and thus may be used as a modelling tool during further stages of research.


2020 ◽  
Vol 16 (2) ◽  
pp. 53-68
Author(s):  
Ranjan Maity ◽  
Samit Bhattacharya

Aesthetics measurement is important in determining and improving the usability of a webpage. Wireframe models, the collection of the rectangular objects, can approximate the size and positions of the different webpage elements. The positional geometry of these objects is primarily responsible for determining aesthetics as shown in studies. In this work, the authors propose a computational model for predicting webpage aesthetics based on the positional geometry features. In this study, the authors found that ten out of the thirteen reported features are statistically significant for webpage aesthetics. Using these ten features, the authors developed a computational model for webpage aesthetics prediction. The model works on the basis of support vector regression. The authors rated the wireframe models of 209 webpages by 150 participants. The average users' ratings and the ten significant features' values were used to train and test the aesthetics prediction model. Five-fold cross-validation technique shows the model can predict aesthetics with a Root Mean Square Error (RMSE) of only 0.42.


2021 ◽  
Vol 4 (1) ◽  
pp. 9 ◽  
Author(s):  
Zexin Hu ◽  
Yiqi Zhao ◽  
Matloob Khushi

Predictions of stock and foreign exchange (Forex) have always been a hot and profitable area of study. Deep learning applications have been proven to yield better accuracy and return in the field of financial prediction and forecasting. In this survey, we selected papers from the Digital Bibliography & Library Project (DBLP) database for comparison and analysis. We classified papers according to different deep learning methods, which included Convolutional neural network (CNN); Long Short-Term Memory (LSTM); Deep neural network (DNN); Recurrent Neural Network (RNN); Reinforcement Learning; and other deep learning methods such as Hybrid Attention Networks (HAN), self-paced learning mechanism (NLP), and Wavenet. Furthermore, this paper reviews the dataset, variable, model, and results of each article. The survey used presents the results through the most used performance metrics: Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), Mean Square Error (MSE), accuracy, Sharpe ratio, and return rate. We identified that recent models combining LSTM with other methods, for example, DNN, are widely researched. Reinforcement learning and other deep learning methods yielded great returns and performances. We conclude that, in recent years, the trend of using deep-learning-based methods for financial modeling is rising exponentially.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1782
Author(s):  
Elias Eze ◽  
Sarah Halse ◽  
Tahmina Ajmal

Providing an accurate prediction of water quality parameters for improved water quality management is a topical issue in the aquaculture industry. Conventional prediction methods have shown different challenges like a poor generalization, poor prediction accuracy, and high time complexity. Aiming at these challenges, a novel hybrid prediction model with ensemble empirical mode decomposition (EEMD) and deep learning (DL) long-short term memory (LSTM) neural network is proposed in this paper. In this innovative hybrid EEMD-DL-LSTM model, firstly, the integrity of the datasets is enhanced by applying moving average filtering and linear interpolation techniques of water quality parameter datasets pre-treatment. Secondly, the measured real sensor water quality parameters dataset is decomposed with the aid of the EEMD algorithm into disparate IMFs and a corresponding residual item. Thirdly, a multi-feature selection process is applied to make a careful selection of a strongly correlated group of IMFs with the measured real water quality parameter datasets and integrate them as inputs to the DL-LSTM neural network. The presented model is built on water quality sensor data collected from an Abalone farm in South Africa. The performance of the novel hybrid prediction model is validated by comparing the results against the real datasets. To measure the overall accuracy of the novel hybrid prediction model, different statistical indices, namely the Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE), are used.


2019 ◽  
Vol 147 ◽  
Author(s):  
G. Wang ◽  
W. Wei ◽  
J. Jiang ◽  
C. Ning ◽  
H. Chen ◽  
...  

AbstractGuangxi, a province in southwestern China, has the second highest reported number of HIV/AIDS cases in China. This study aimed to develop an accurate and effective model to describe the tendency of HIV and to predict its incidence in Guangxi. HIV incidence data of Guangxi from 2005 to 2016 were obtained from the database of the Chinese Center for Disease Control and Prevention. Long short-term memory (LSTM) neural network models, autoregressive integrated moving average (ARIMA) models, generalised regression neural network (GRNN) models and exponential smoothing (ES) were used to fit the incidence data. Data from 2015 and 2016 were used to validate the most suitable models. The model performances were evaluated by evaluating metrics, including mean square error (MSE), root mean square error, mean absolute error and mean absolute percentage error. The LSTM model had the lowest MSE when the N value (time step) was 12. The most appropriate ARIMA models for incidence in 2015 and 2016 were ARIMA (1, 1, 2) (0, 1, 2)12and ARIMA (2, 1, 0) (1, 1, 2)12, respectively. The accuracy of GRNN and ES models in forecasting HIV incidence in Guangxi was relatively poor. Four performance metrics of the LSTM model were all lower than the ARIMA, GRNN and ES models. The LSTM model was more effective than other time-series models and is important for the monitoring and control of local HIV epidemics.


2012 ◽  
Vol 502 ◽  
pp. 253-257 ◽  
Author(s):  
Pai Li ◽  
Yao Xiang Li

In this paper, an integration of BP neural network and PCA for modeling wood water content of larch combined with NIRS was investigated. The original spectra were collected and pretreated with 9 point smoothing and multiplicative scatter correction (MSC). Five typical principal components were extracted from PCA with the application of establishing prediction model. Full cross-validation approach was applied to achieve desirable modeling performance. The prediction correlation coefficient (R) was 0.952 while the mean square error of prediction (MSEP) was 38.27. This study indicated that NIR is a useful tool for rapid and accurate prediction of wood water content.


2020 ◽  
Vol 38 (2A) ◽  
pp. 255-264
Author(s):  
Hanan A. R. Akkar ◽  
Sameem A. Salman

Computer vision and image processing are extremely necessary for medical pictures analysis. During this paper, a method of Bio-inspired Artificial Intelligent (AI) optimization supported by an artificial neural network (ANN) has been widely used to detect pictures of skin carcinoma. A Moth Flame Optimization (MFO) is utilized to educate the artificial neural network (ANN). A different feature is an extract to train the classifier. The comparison has been formed with the projected sample and two Artificial Intelligent optimizations, primarily based on classifier especially with, ANN-ACO (ANN training with Ant Colony Optimization (ACO)) and ANN-PSO (training ANN with Particle Swarm Optimization (PSO)). The results were assessed using a variety of overall performance measurements to measure indicators such as Average Rate of Detection (ARD), Average Mean Square error (AMSTR) obtained from training, Average Mean Square error (AMSTE) obtained for testing the trained network, the Average Effective Processing Time (AEPT) in seconds, and the Average Effective Iteration Number (AEIN). Experimental results clearly show the superiority of the proposed (ANN-MFO) model with different features.


Author(s):  
Sandeep Samantaray ◽  
Abinash Sahoo

Accurate prediction of water table depth over long-term in arid agricultural areas are very much important for maintaining environmental sustainability. Because of intricate and diverse hydrogeological features, boundary conditions, and human activities researchers face enormous difficulties for predicting water table depth. A virtual study on forecast of water table depth using various neural networks is employed in this paper. Hybrid neural network approach like Adaptive Neuro Fuzzy Inference System (ANFIS), Recurrent Neural Network (RNN), Radial Basis Function Neural Network (RBFN) is employed here to appraisal water levels as a function of average temperature, precipitation, humidity, evapotranspiration and infiltration loss data. Coefficient of determination (R2), Root mean square error (RMSE), and Mean square error (MSE) are used to evaluate performance of model development. While ANFIS algorithm is used, Gbell function gives best value of performance for model development. Whole outcomes establish that, ANFIS accomplishes finest as related to RNN and RBFN for predicting water table depth in watershed.


Sign in / Sign up

Export Citation Format

Share Document