Pillars of Ontology Treatment in the Medical Domain

2009 ◽  
Vol 11 (4) ◽  
pp. 47-73 ◽  
Author(s):  
Daniel Sonntag ◽  
Pinar Wennerberg ◽  
Paul Buitelaar ◽  
Sonja Zillner

In this chapter the authors describe the three pillars of ontology treatment in the medical domain in a comprehensive case study within the large-scale THESEUS MEDICO project. MEDICO addresses the need for advanced semantic technologies in medical image and patient data search. The objective is to enable a seamless integration of medical images and different user applications by providing direct access to image semantics. Semantic image retrieval should provide the basis for the help in clinical decision support and computer aided diagnosis. During the course of lymphoma diagnosis and continual treatment, image data is produced several times using different image modalities. After semantic annotation, the images need to be integrated with medical (textual) data repositories and ontologies. They build upon the three pillars of knowledge engineering, ontology mediation and alignment, and ontology population and learning to achieve the objectives of the MEDICO project.

Author(s):  
Daniel Sonntag ◽  
Pinar Wennerberg ◽  
Paul Buitelaar ◽  
Sonja Zillner

In this chapter the authors describe the three pillars of ontology treatment in the medical domain in a comprehensive case study within the large-scale THESEUS MEDICO project. MEDICO addresses the need for advanced semantic technologies in medical image and patient data search. The objective is to enable a seamless integration of medical images and different user applications by providing direct access to image semantics. Semantic image retrieval should provide the basis for the help in clinical decision support and computer aided diagnosis. During the course of lymphoma diagnosis and continual treatment, image data is produced several times using different image modalities. After semantic annotation, the images need to be integrated with medical (textual) data repositories and ontologies. They build upon the three pillars of knowledge engineering, ontology mediation and alignment, and ontology population and learning to achieve the objectives of the MEDICO project.


Author(s):  
Stephen Dill ◽  
Nadav Eiron ◽  
David Gibson ◽  
Daniel Gruhl ◽  
R. Guha ◽  
...  

2021 ◽  
Vol 13 (9) ◽  
pp. 5108
Author(s):  
Navin Ranjan ◽  
Sovit Bhandari ◽  
Pervez Khan ◽  
Youn-Sik Hong ◽  
Hoon Kim

The transportation system, especially the road network, is the backbone of any modern economy. However, with rapid urbanization, the congestion level has surged drastically, causing a direct effect on the quality of urban life, the environment, and the economy. In this paper, we propose (i) an inexpensive and efficient Traffic Congestion Pattern Analysis algorithm based on Image Processing, which identifies the group of roads in a network that suffers from reoccurring congestion; (ii) deep neural network architecture, formed from Convolutional Autoencoder, which learns both spatial and temporal relationships from the sequence of image data to predict the city-wide grid congestion index. Our experiment shows that both algorithms are efficient because the pattern analysis is based on the basic operations of arithmetic, whereas the prediction algorithm outperforms two other deep neural networks (Convolutional Recurrent Autoencoder and ConvLSTM) in terms of large-scale traffic network prediction performance. A case study was conducted on the dataset from Seoul city.


2021 ◽  
Vol 11 (10) ◽  
pp. 4426
Author(s):  
Chunyan Ma ◽  
Ji Fan ◽  
Jinghao Yao ◽  
Tao Zhang

Computer vision-based action recognition of basketball players in basketball training and competition has gradually become a research hotspot. However, owing to the complex technical action, diverse background, and limb occlusion, it remains a challenging task without effective solutions or public dataset benchmarks. In this study, we defined 32 kinds of atomic actions covering most of the complex actions for basketball players and built the dataset NPU RGB+D (a large scale dataset of basketball action recognition with RGB image data and Depth data captured in Northwestern Polytechnical University) for 12 kinds of actions of 10 professional basketball players with 2169 RGB+D videos and 75 thousand frames, including RGB frame sequences, depth maps, and skeleton coordinates. Through extracting the spatial features of the distances and angles between the joint points of basketball players, we created a new feature-enhanced skeleton-based method called LSTM-DGCN for basketball player action recognition based on the deep graph convolutional network (DGCN) and long short-term memory (LSTM) methods. Many advanced action recognition methods were evaluated on our dataset and compared with our proposed method. The experimental results show that the NPU RGB+D dataset is very competitive with the current action recognition algorithms and that our LSTM-DGCN outperforms the state-of-the-art action recognition methods in various evaluation criteria on our dataset. Our action classifications and this NPU RGB+D dataset are valuable for basketball player action recognition techniques. The feature-enhanced LSTM-DGCN has a more accurate action recognition effect, which improves the motion expression ability of the skeleton data.


2021 ◽  
Vol 28 (1) ◽  
pp. e100251
Author(s):  
Ian Scott ◽  
Stacey Carter ◽  
Enrico Coiera

Machine learning algorithms are being used to screen and diagnose disease, prognosticate and predict therapeutic responses. Hundreds of new algorithms are being developed, but whether they improve clinical decision making and patient outcomes remains uncertain. If clinicians are to use algorithms, they need to be reassured that key issues relating to their validity, utility, feasibility, safety and ethical use have been addressed. We propose a checklist of 10 questions that clinicians can ask of those advocating for the use of a particular algorithm, but which do not expect clinicians, as non-experts, to demonstrate mastery over what can be highly complex statistical and computational concepts. The questions are: (1) What is the purpose and context of the algorithm? (2) How good were the data used to train the algorithm? (3) Were there sufficient data to train the algorithm? (4) How well does the algorithm perform? (5) Is the algorithm transferable to new clinical settings? (6) Are the outputs of the algorithm clinically intelligible? (7) How will this algorithm fit into and complement current workflows? (8) Has use of the algorithm been shown to improve patient care and outcomes? (9) Could the algorithm cause patient harm? and (10) Does use of the algorithm raise ethical, legal or social concerns? We provide examples where an algorithm may raise concerns and apply the checklist to a recent review of diagnostic imaging applications. This checklist aims to assist clinicians in assessing algorithm readiness for routine care and identify situations where further refinement and evaluation is required prior to large-scale use.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Fuyong Xing ◽  
Yuanpu Xie ◽  
Xiaoshuang Shi ◽  
Pingjun Chen ◽  
Zizhao Zhang ◽  
...  

Abstract Background Nucleus or cell detection is a fundamental task in microscopy image analysis and supports many other quantitative studies such as object counting, segmentation, tracking, etc. Deep neural networks are emerging as a powerful tool for biomedical image computing; in particular, convolutional neural networks have been widely applied to nucleus/cell detection in microscopy images. However, almost all models are tailored for specific datasets and their applicability to other microscopy image data remains unknown. Some existing studies casually learn and evaluate deep neural networks on multiple microscopy datasets, but there are still several critical, open questions to be addressed. Results We analyze the applicability of deep models specifically for nucleus detection across a wide variety of microscopy image data. More specifically, we present a fully convolutional network-based regression model and extensively evaluate it on large-scale digital pathology and microscopy image datasets, which consist of 23 organs (or cancer diseases) and come from multiple institutions. We demonstrate that for a specific target dataset, training with images from the same types of organs might be usually necessary for nucleus detection. Although the images can be visually similar due to the same staining technique and imaging protocol, deep models learned with images from different organs might not deliver desirable results and would require model fine-tuning to be on a par with those trained with target data. We also observe that training with a mixture of target and other/non-target data does not always mean a higher accuracy of nucleus detection, and it might require proper data manipulation during model training to achieve good performance. Conclusions We conduct a systematic case study on deep models for nucleus detection in a wide variety of microscopy images, aiming to address several important but previously understudied questions. We present and extensively evaluate an end-to-end, pixel-to-pixel fully convolutional regression network and report a few significant findings, some of which might have not been reported in previous studies. The model performance analysis and observations would be helpful to nucleus detection in microscopy images.


2016 ◽  
Vol 8s2 ◽  
pp. BII.S40208
Author(s):  
Sripriya Rajamani ◽  
Aaron Bieringer ◽  
Stephanie Wallerius ◽  
Daniel Jensen ◽  
Tamara Winden ◽  
...  

Immunization information systems (IIS) are population-based and confidential computerized systems maintained by public health agencies containing individual data on immunizations from participating health care providers. IIS hold comprehensive vaccination histories given across providers and over time. An important aspect to IIS is the clinical decision support for immunizations (CDSi), consisting of vaccine forecasting algorithms to determine needed immunizations. The study objective was to analyze the CDSi presentation by IIS in Minnesota (Minnesota Immunization Information Connection [MIIC]) through direct access by IIS interface and by access through electronic health records (EHRs) to outline similarities and differences. The immunization data presented were similar across the three systems examined, but with varying ability to integrate data across MIIC and EHR, which impacts immunization data reconciliation. Study findings will lead to better understanding of immunization data display, clinical decision support, and user functionalities with the ultimate goal of promoting IIS CDSi to improve vaccination rates.


Big data is large-scale data collected for knowledge discovery, it has been widely used in various applications. Big data often has image data from the various applications and requires effective technique to process data. In this paper, survey has been done in the big image data researches to analysis the effective performance of the methods. Deep learning techniques provides the effective performance compared to other methods included wavelet based methods. The deep learning techniques has the problem of requiring more computational time, and this can be overcome by lightweight methods.


The domain of image signal processing, image compression is the significant technique, which is mainly invented to reduce the redundancy of image data in order to able to transmit the image pixels with high quality resolution. The standard image compression techniques like losseless and lossy compression technique generates high compression ratio image with efficient storage and transmission requirement respectively. There are many image compression technique are available for example JPEG, DWT and DCT based compression algorithms which provides effective results in terms of high compression ratio with clear quality image transformation. But they have more computational complexities in terms of processing, encoding, energy consumption and hardware design. Thus, bringing out these challenges, the proposed paper considers the most prominent research papers and discuses FPGA architecture design and future scope in the state of art of image compression technique. The primary aim to investigate the research challenges toward VLSI designing and image compression. The core section of the proposed study includes three folds viz standard architecture designs, related work and open research challenges in the domain of image compression.


Sign in / Sign up

Export Citation Format

Share Document