Trust Management for VANETs

Author(s):  
Jie Zhang

An increasingly large number of cars are being equipped with GPS and Wi-Fi devices, forming vehicular ad-hoc networks (VANETs) and enabling vehicle to vehicle communication with the goal of providing increased passenger and road safety. However, dishonest peers (vehicles) in a VANET may send out false information to maximize their own utility. Given the dire consequences of acting on false information in this context, there is a serious need to establish trust among peers. This article first discusses the challenges for trust management caused by the important characteristics of VANET environments, and identifies desired properties that effective trust management should incorporate in order to address the challenges. The author then surveys and evaluates existing trust models in VANETs, and points out that none of the trust models has achieved all the properties. Finally, the author proposes some important future directions for research towards effective trust management for VANETs.

2013 ◽  
pp. 354-375
Author(s):  
Md. Imrul Hassan ◽  
Hai L. Vu ◽  
Taka Sakurai

It is envisaged that supporting vehicle-to-vehicle and vehicle-to-infrastructure communications with a Vehicular Ad-Hoc Network (VANET) can improve road safety and increase transportation efficiency. Among the candidate applications of VANETs, cooperative collision avoidance (CCA) has attracted considerable interest as it can significantly improve road safety. Due to the ad hoc nature of these highly dynamic networks, no central coordination or handshaking protocol can be assumed and safety applications must broadcast information of interest to many surrounding cars by sharing a single channel in a distributed manner. This gives rise to one of the key challenges in vehicle-to-vehicle communication systems, namely, the development of an efficient and reliable medium access control (MAC) protocol for CCA. In this chapter, we provide an overview of proposed MAC protocols for VANETs and describe current standardization activities. We then focus on the performance of the IEEE 802.11 carrier sense multiple access (CSMA) based MAC protocol that is being standardized by the IEEE standards body for VANET applications. In particular, we review prominent existing analytical models and study their advantages, disadvantages and their suitability for performance evaluation of the MAC protocol for VANETs. After a discussion of the shortcomings of these models, we develop a new analytical model in the second half of the chapter. Explicit expressions are derived for the mean and standard deviation of the packet delay, as well as for the packet delivery ratio (PDR) at the MAC layer in an unsaturated network formed by moving vehicles on a highway. We validate the analytical results using extensive simulations and show that good accuracy can be achieved with the proposed model for a range of topologies and traffic load conditions. More importantly, using the model, we show that hidden terminals can have a severe, detrimental impact on the PDR, which may compromise the reliability required for safety applications.


Author(s):  
Mekelleche Fatiha ◽  
Haffaf Hafid

Vehicular Ad-Hoc Networks (VANETs), a new mobile ad-hoc network technology (MANET), are currently receiving increased attention from manufacturers and researchers. They consist of several mobile vehicles (intelligent vehicles) that can communicate with each other (inter-vehicle communication) or with fixed road equipment (vehicle-infrastructure communication) adopting new wireless communication technologies. The objective of these networks is to improve road safety by warning motorists of any event on the road (accidents, hazards, possible deviations, etc.), and make the time spent on the road more pleasant and less boring (applications deployed to ensure the comfort of the passengers). Practically, VANETs are designed to support the development of Intelligent Transportation Systems (ITS). The latter are seen as one of the technical solutions to transport challenges. This chapter, given the importance of road safety in the majority of developed countries, presents a comprehensive study on the VANET networks, highlighting their main features.


Vehicular Communication is designed for enhancing road safety and support autonomous driving becoming very popular in the present scenario. The proposed system aims to design a suitable and secured system for overtaking on highways. The main problem faced while driving vehicle on highways is to overtake a larger vehicle on narrow roads, where the driver visibility is limited and it is very risky to overtake from right side as there is a high probability of colliding with the vehicles coming in opposite direction. The proposed system solves the problem by establishing ad-hoc connection in 5G environment with the vehicle to be overtaken. The system consists of a communication unit designed with a controller along with various options which are used to decide when the vehicle can safely overtake. In this way the driver can safely overtake the larger vehicles without any risk of road accidents. The proposed system uses fractal geometry to design the antenna which is used for the vehicle to vehicle communication at 5G frequencies up to 20GHz


Author(s):  
Mamata Rath ◽  
Sushruta Mishra

Vehicular ad hoc networks (VANETs) have evolved as an invigorating network system and application domain in current communication technology. In smart city applications context, there are smart vehicles embedded with sensors and dynamically programmed IoT devices, which are to be managed and controlled energetically. Progressively, vehicles are being furnished with surrounded actuators, handling signals, and wireless communication abilities. This chapter focuses on the fact that this special network has opened various possible outcomes for intense and potential extraordinary applications on security, effectiveness, comfort, confidentiality effort, and interest while they are significantly vibrant. Irrespective of many challenges such as high frequency of topology change and link failure possibility, routing management in VANET has been successful in traffic scenario during vehicle-to-vehicle communication.


Author(s):  
Farhan Ahmad ◽  
Asma Adnane ◽  
Chaker Abdelaziz Kerrache ◽  
Virginia N. L. Franqueira ◽  
Fatih Kurugollu

Vehicular ad-hoc network (VANET) and internet-of-vehicles (IoV) are complex networks which provide a unique platform for vehicles to communicate and exchange critical information (such as collision avoidance warnings) with each other in an intelligent manner. Thus, the information disseminated in the network should be authentic and originated from legitimate vehicles. Creating a trusted environment in the network can enable the vehicles to identify and revoke malicious ones. Trust is an important concept in VANET and IoV to achieve security in the network, where every vehicle equipped with an appropriate trust model can evaluate the trustworthiness of the received information and its sender. This chapter discusses trust in both VANET and IoV and identifies various trust models developed for VANET and IoV. The contribution of this chapter is threefold. First, the authors present a detailed taxonomy of trust models in VANET and IoV. Second, they provide current trends in the domain of trust management specifically for VANET and IoV, and finally, they provide various open research directions.


Author(s):  
Md. Imrul Hassan ◽  
Hai L. Vu ◽  
Taka Sakurai

It is envisaged that supporting vehicle-to-vehicle and vehicle-to-infrastructure communications with a Vehicular Ad-Hoc Network (VANET) can improve road safety and increase transportation efficiency. Among the candidate applications of VANETs, cooperative collision avoidance (CCA) has attracted considerable interest as it can significantly improve road safety. Due to the ad hoc nature of these highly dynamic networks, no central coordination or handshaking protocol can be assumed and safety applications must broadcast information of interest to many surrounding cars by sharing a single channel in a distributed manner. This gives rise to one of the key challenges in vehicle-to-vehicle communication systems, namely, the development of an efficient and reliable medium access control (MAC) protocol for CCA. In this chapter, we provide an overview of proposed MAC protocols for VANETs and describe current standardization activities. We then focus on the performance of the IEEE 802.11 carrier sense multiple access (CSMA) based MAC protocol that is being standardized by the IEEE standards body for VANET applications. In particular, we review prominent existing analytical models and study their advantages, disadvantages and their suitability for performance evaluation of the MAC protocol for VANETs. After a discussion of the shortcomings of these models, we develop a new analytical model in the second half of the chapter. Explicit expressions are derived for the mean and standard deviation of the packet delay, as well as for the packet delivery ratio (PDR) at the MAC layer in an unsaturated network formed by moving vehicles on a highway. We validate the analytical results using extensive simulations and show that good accuracy can be achieved with the proposed model for a range of topologies and traffic load conditions. More importantly, using the model, we show that hidden terminals can have a severe, detrimental impact on the PDR, which may compromise the reliability required for safety applications.


2020 ◽  
Vol 16 (7) ◽  
pp. 155014772093937 ◽  
Author(s):  
Ibrahim Abdo Rai ◽  
Riaz Ahmed Shaikh ◽  
Syed Raheel Hassan

Vehicular ad-hoc networks allow vehicles to exchange messages pertaining to safety and road efficiency. Building trust between nodes can, therefore, protect vehicular ad-hoc networks from malicious nodes and eliminate fake messages. Although there are several trust models already exist, many schemes suffer from varied limitations. For example, many schemes rely on information provided by other peers or central authorities, for example, roadside units and reputation management centers to ensure message reliability and build nodes’ reputation. Also, none of the proposed schemes operate in different environments, for example, urban and rural. To overcome these limitations, we propose a novel trust management scheme for self-organized vehicular ad-hoc networks. The scheme is based on a crediting technique and does not rely on other peers or central authorities which distinguishes it as an economical solution. Moreover, it is hybrid, in the sense it is data-based and entity-based which makes it capable of revoking malicious nodes and discarding fake messages. Furthermore, it operates in a dual-mode (urban and rural). The simulation has been performed utilizing Veins, an open-source framework along with OMNeT++, a network simulator, and SUMO, a traffic simulator. The scheme has been tested with two trust models (urban and rural). The simulation results prove the performance and security efficacy of the proposed scheme.


2021 ◽  
Author(s):  
Samira Harrabi ◽  
Ines Ben Jaafar ◽  
Khaled Ghedira

Abstract Vehicular Ad Hoc Networks (VANETs) are a particular class of Mobile Ad Hoc Networks (MANETs). The VANETs provide wireless communication among vehicles and vehicle-to-road-side units. Even though the VANETs are a specific type of MANETs, a highly dynamic topology is a main feature that differentiates them from other kinds of ad hoc networks. As a result, designing an efficient routing protocol is considered a challenge. The performance of vehicle-to-vehicle communication depends on how better the routing protocol takes in consideration the particularities of the VANETs. Swarm Intelligence (SI) is considered as a promising solution to optimize vehicular communication costs. In this paper, we explore the SI approach to deal with the routing problems in the VANETs. We also evaluate and compare two swarming agent-based protocols using numerous QoS parameters, namely the average end-to-end delay and the ratio packet loss which influence the performance of network communication.


Sign in / Sign up

Export Citation Format

Share Document