Enhancement of Network Performance in VANET Using Dynamic Routing Strategies

Author(s):  
Mamata Rath ◽  
Sushruta Mishra

Vehicular ad hoc networks (VANETs) have evolved as an invigorating network system and application domain in current communication technology. In smart city applications context, there are smart vehicles embedded with sensors and dynamically programmed IoT devices, which are to be managed and controlled energetically. Progressively, vehicles are being furnished with surrounded actuators, handling signals, and wireless communication abilities. This chapter focuses on the fact that this special network has opened various possible outcomes for intense and potential extraordinary applications on security, effectiveness, comfort, confidentiality effort, and interest while they are significantly vibrant. Irrespective of many challenges such as high frequency of topology change and link failure possibility, routing management in VANET has been successful in traffic scenario during vehicle-to-vehicle communication.

Author(s):  
Jie Zhang

An increasingly large number of cars are being equipped with GPS and Wi-Fi devices, forming vehicular ad-hoc networks (VANETs) and enabling vehicle to vehicle communication with the goal of providing increased passenger and road safety. However, dishonest peers (vehicles) in a VANET may send out false information to maximize their own utility. Given the dire consequences of acting on false information in this context, there is a serious need to establish trust among peers. This article first discusses the challenges for trust management caused by the important characteristics of VANET environments, and identifies desired properties that effective trust management should incorporate in order to address the challenges. The author then surveys and evaluates existing trust models in VANETs, and points out that none of the trust models has achieved all the properties. Finally, the author proposes some important future directions for research towards effective trust management for VANETs.


2021 ◽  
Author(s):  
Samira Harrabi ◽  
Ines Ben Jaafar ◽  
Khaled Ghedira

Abstract Vehicular Ad Hoc Networks (VANETs) are a particular class of Mobile Ad Hoc Networks (MANETs). The VANETs provide wireless communication among vehicles and vehicle-to-road-side units. Even though the VANETs are a specific type of MANETs, a highly dynamic topology is a main feature that differentiates them from other kinds of ad hoc networks. As a result, designing an efficient routing protocol is considered a challenge. The performance of vehicle-to-vehicle communication depends on how better the routing protocol takes in consideration the particularities of the VANETs. Swarm Intelligence (SI) is considered as a promising solution to optimize vehicular communication costs. In this paper, we explore the SI approach to deal with the routing problems in the VANETs. We also evaluate and compare two swarming agent-based protocols using numerous QoS parameters, namely the average end-to-end delay and the ratio packet loss which influence the performance of network communication.


2018 ◽  
Vol 7 (3.16) ◽  
pp. 76
Author(s):  
Deepak . ◽  
Rajkumar .

Vehicular ad hoc networks is an emerging area for researchers to provide intelligent transportation system to the society. It is due to the wide area of applications of VANETs interest is developed among the people from different countries to be a part of it. Therefore many projects had been started and also presently working to implement VANETs in real world scenario. The main challenge in its implementation is to provide a secure mechanism against the various attacks and threats that have the capability to bring the network performance significantly down. In this paper to overcome different types of authentication based attacks in VANETs an ECDSA based secure routing protocol SE-AODV is proposed with security features incorporated in already existing AODV routing protocol. The performance of SE-AODV is evaluated and compared with original AODV and AODV with black hole attack (BH-AODV). The SE-AODV shows better performance with the parameters used for comparison with the variation in vehicle density, speed of vehicles and simulation time. 


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2764 ◽  
Author(s):  
Huanhuan Yang ◽  
Zongpu Jia ◽  
Guojun Xie

As an auxiliary facility, roadside units (RSUs) can well improve the shortcomings incurred by ad hoc networks and promote network performance in a vehicular ad hoc network (VANET). However, deploying a large number of RSUs will lead to high installation and maintenance costs. Therefore, trying to find the best locations is a key issue when deploying RSUs with the set delay and budget. In this paper, we study the delay-bounded and cost-limited RSU deployment (DBCL) problem in urban VANET. We prove it is non-deterministic polynomial-time hard (NP-hard), and a binary differential evolution scheme is proposed to maximize the number of roads covered by deploying RSUs. Opposite-based learning is introduced to initialize the first generation, and a binary differential mutation operator is designed to obtain binary coding. A random variable is added to the traditional crossover operator to increase population diversity. Also, a greedy-based individual reparation and promotion algorithm is adopted to repair infeasible solutions violating given constraints, and to gain optimal feasible solutions with the compromise of given limits. Moreover, after selection, a solution promotion algorithm is executed to promote the best solution found in generation. Simulation is performed on analog trajectories sets, and results show that our proposed algorithm has a higher road coverage ratio and lower packet loss compared with other schemes.


2013 ◽  
pp. 354-375
Author(s):  
Md. Imrul Hassan ◽  
Hai L. Vu ◽  
Taka Sakurai

It is envisaged that supporting vehicle-to-vehicle and vehicle-to-infrastructure communications with a Vehicular Ad-Hoc Network (VANET) can improve road safety and increase transportation efficiency. Among the candidate applications of VANETs, cooperative collision avoidance (CCA) has attracted considerable interest as it can significantly improve road safety. Due to the ad hoc nature of these highly dynamic networks, no central coordination or handshaking protocol can be assumed and safety applications must broadcast information of interest to many surrounding cars by sharing a single channel in a distributed manner. This gives rise to one of the key challenges in vehicle-to-vehicle communication systems, namely, the development of an efficient and reliable medium access control (MAC) protocol for CCA. In this chapter, we provide an overview of proposed MAC protocols for VANETs and describe current standardization activities. We then focus on the performance of the IEEE 802.11 carrier sense multiple access (CSMA) based MAC protocol that is being standardized by the IEEE standards body for VANET applications. In particular, we review prominent existing analytical models and study their advantages, disadvantages and their suitability for performance evaluation of the MAC protocol for VANETs. After a discussion of the shortcomings of these models, we develop a new analytical model in the second half of the chapter. Explicit expressions are derived for the mean and standard deviation of the packet delay, as well as for the packet delivery ratio (PDR) at the MAC layer in an unsaturated network formed by moving vehicles on a highway. We validate the analytical results using extensive simulations and show that good accuracy can be achieved with the proposed model for a range of topologies and traffic load conditions. More importantly, using the model, we show that hidden terminals can have a severe, detrimental impact on the PDR, which may compromise the reliability required for safety applications.


Author(s):  
Mekelleche Fatiha ◽  
Haffaf Hafid

Vehicular Ad-Hoc Networks (VANETs), a new mobile ad-hoc network technology (MANET), are currently receiving increased attention from manufacturers and researchers. They consist of several mobile vehicles (intelligent vehicles) that can communicate with each other (inter-vehicle communication) or with fixed road equipment (vehicle-infrastructure communication) adopting new wireless communication technologies. The objective of these networks is to improve road safety by warning motorists of any event on the road (accidents, hazards, possible deviations, etc.), and make the time spent on the road more pleasant and less boring (applications deployed to ensure the comfort of the passengers). Practically, VANETs are designed to support the development of Intelligent Transportation Systems (ITS). The latter are seen as one of the technical solutions to transport challenges. This chapter, given the importance of road safety in the majority of developed countries, presents a comprehensive study on the VANET networks, highlighting their main features.


Author(s):  
Zhaomin Mo ◽  
Hao Zhu ◽  
Kia Makki ◽  
Niki Pissinou ◽  
Masoumeh Karimi

Vehicular ad-hoc networks (VANETs) have been gained importance for the inter-vehicle communication that supports local communication between vehicles without any expensive infrastructure and considerable configuration efforts. How to provide light-weight and scalable location management service which facilitates geographic routing in VANETs remains a fundamental issue. In this paper we will present a novel peer-to-peer location management protocol, called PLM, to provide location management service in VANETs. PLM makes use of high mobility in VANETs to disseminate vehicles’ historical location information over the network. A vehicle is able to predict current location of other vehicles with Kalman filtering technique. Our theoretical analysis shows that PLM is able to achieve high location information availability with a low protocol overhead and latency. The simulation results indicate that PLM can provide fairly accurate location information with quite low communication overhead in VANETs.. [Article copies are available for purchase from InfoSci-on-Demand.com]


Sign in / Sign up

Export Citation Format

Share Document