Mining Students' Learning Behavior in Moodle System
In the last few years, Educational Data Mining has become an interesting area exploited to discover and extract hidden knowledge of students from educational environment data. During the establishment of this work an attempt was made to manage the extracted information using mining techniques. These methods took place in order to get groups of students with similar characteristics. The application of classification, clustering and association rules mining algorithms on the data stored on the e-learning (Moodle system) database allowed to extract knowledges that help to understand students' behaviors and patterns. Additionally, the development of a Web application for the educators is a tool to monitor their students learning behavior by monitoring the number of assignments taken, the number of quizzes taken, the number of forum post and read by students, etc. The knowledge obtained can help the instructors to make decision about their students' interacting with the courses activities in Moodle system, and to create an efficient educational environment. In this research, a Data Mining tool called RapidMiner was used for mining the data from the Moodle system database, and a web application written in PHP was established to aid teachers with statistics.