scholarly journals Artificial Protein Assemblies Induced by Metal Coordination Interaction

2012 ◽  
Vol 59 (0) ◽  
pp. 82-83
Author(s):  
Koji Oohora
Author(s):  
Suyeong Han ◽  
Yongwon Jung

Nature uses a wide range of well-defined biomolecular assemblies in diverse cellular processes, where proteins are major building blocks for these supramolecular assemblies. Inspired by their natural counterparts, artificial protein-based assemblies have attracted strong interest as new bio-nanostructures, and strategies to construct ordered protein assemblies have been rapidly expanding. In this review, we provide an overview of very recent studies in the field of artificial protein assemblies, with the particular aim of introducing major assembly methods and unique features of these assemblies. Computational de novo designs were used to build various assemblies with artificial protein building blocks, which are unrelated to natural proteins. Small chemical ligands and metal ions have also been extensively used for strong and bio-orthogonal protein linking. Here, in addition to protein assemblies with well-defined sizes, protein oligomeric and array structures with rather undefined sizes (but with definite repeat protein assembly units) also will be discussed in the context of well-defined protein nanostructures. Lastly, we will introduce multiple examples showing how protein assemblies can be effectively used in various fields such as therapeutics and vaccine development. We believe that structures and functions of artificial protein assemblies will be continuously evolved, particularly according to specific application goals.


2011 ◽  
Vol 3 (2) ◽  
pp. 597-605 ◽  
Author(s):  
Lei Zhang ◽  
Jiafu Shi ◽  
Zhongyi Jiang ◽  
Yanjun Jiang ◽  
Ruijie Meng ◽  
...  

2016 ◽  
Vol 4 (46) ◽  
pp. 7464-7471 ◽  
Author(s):  
An-na Tang ◽  
Lanping Duan ◽  
Meijiao Liu ◽  
Xiangchao Dong

A MIP with affinity for kininogen fragments was synthesized by epitope imprinting for biomarker analysis in serum.


2021 ◽  
Author(s):  
Xiaorong Zhang ◽  
Yu Liu ◽  
Bowen Zheng ◽  
Jiachen Zang ◽  
Chenyan Lv ◽  
...  

Abstract Although various artificial protein nanoarchitectures have been constructed, controlling conversion between protein assemblies with different dimensions has largely been unexplored. Here, we describe a simple, effective approach to regulate conversion between 0D protein nanomaterials and their 1D or 2D analogues by adjusting the geometric arrangement of dimeric protein building blocks. Thermotoga maritima ferritin (TmFtn) naturally occurs as a dimeric protein, twelve of which interact with each other in a head-to-side manner to generate 0D 24-meric protein nanocage in the presence of Ca2+. By tuning two contiguous dimeric proteins to interact in a fully or partially side-by-side fashion through protein interface redesign, we can render the conversion of the inherent salt-mediated 0D protein nanocage into 1D or 2D nanomaterials in response to multiple external stimuli. Thus, one kind of dimeric protein building block can generate three protein materials with different dimensions in a manner that highly resembles natural pentamer building blocks from viral capsids that form different protein assemblies.


2021 ◽  
Vol 22 (23) ◽  
pp. 12911
Author(s):  
Zhaoqiu Gong ◽  
Yuanyuan Tang ◽  
Ningning Ma ◽  
Wenhong Cao ◽  
Yong Wang ◽  
...  

As an important component that constitutes all the cells and tissues of the human body, protein is involved in most of the biological processes. Inspired by natural protein systems, considerable efforts covering many discipline fields were made to design artificial protein assemblies and put them into application in recent decades. The rapid development of structural DNA nanotechnology offers significant means for protein assemblies and promotes their application. Owing to the programmability, addressability and accurate recognition ability of DNA, many protein assemblies with unprecedented structures and improved functions have been successfully fabricated, consequently creating many brand-new researching fields. In this review, we briefly introduced the DNA-based protein assemblies, and highlighted the limitations in application process and corresponding strategies in four aspects, including biological catalysis, protein detection, biomedicine treatment and other applications.


Nanoscale ◽  
2016 ◽  
Vol 8 (1) ◽  
pp. 333-341 ◽  
Author(s):  
S. P. Qiao ◽  
C. Lang ◽  
R. D. Wang ◽  
X. M. Li ◽  
T. F. Yan ◽  
...  

Utilizing V shape proteins, we construct 1D, 2D complicated nanostructures through metal coordination. This provides an approach for designing protein assemblies with distinctive topological morphology.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaorong Zhang ◽  
Yu Liu ◽  
Bowen Zheng ◽  
Jiachen Zang ◽  
Chenyan Lv ◽  
...  

AbstractAlthough various artificial protein nanoarchitectures have been constructed, controlling the transformation between different protein assemblies has largely been unexplored. Here, we describe an approach to realize the self-assembly transformation of dimeric building blocks by adjusting their geometric arrangement. Thermotoga maritima ferritin (TmFtn) naturally occurs as a dimer; twelve of these dimers interact with each other in a head-to-side manner to generate 24-meric hollow protein nanocage in the presence of Ca2+ or PEG. By tuning two contiguous dimeric proteins to interact in a fully or partially side-by-side fashion through protein interface redesign, we can render the self-assembly transformation of such dimeric building blocks from the protein nanocage to filament, nanorod and nanoribbon in response to multiple external stimuli. We show similar dimeric protein building blocks can generate three kinds of protein materials in a manner that highly resembles natural pentamer building blocks from viral capsids that form different protein assemblies.


2009 ◽  
Vol 107 (5) ◽  
pp. 1827-1832 ◽  
Author(s):  
Eric N. Salgado ◽  
Xavier I. Ambroggio ◽  
Jeffrey D. Brodin ◽  
Richard A. Lewis ◽  
Brian Kuhlman ◽  
...  

Metal coordination is a key structural and functional component of a large fraction of proteins. Given this dual role we considered the possibility that metal coordination may have played a templating role in the early evolution of protein folds and complexes. We describe here a rational design approach, Metal Templated Interface Redesign (MeTIR), that mimics the time course of a hypothetical evolutionary pathway for the formation of stable protein assemblies through an initial metal coordination event. Using a folded monomeric protein, cytochrome cb562, as a building block we show that its non-self-associating surface can be made self-associating through a minimal number of mutations that enable Zn coordination. The protein interfaces in the resulting Zn-directed, D2-symmetrical tetramer are subsequently redesigned, yielding unique protein architectures that self-assemble in the presence or absence of metals. Aside from its evolutionary implications, MeTIR provides a route to engineer de novo protein interfaces and metal coordination environments that can be tuned through the extensive noncovalent bonding interactions in these interfaces.


Sign in / Sign up

Export Citation Format

Share Document