scholarly journals The Effects of Disinfectants on Dimensional Accuracy and Surface Quality of Impression Materials and Gypsum Casts

Author(s):  
Wala Amin
2021 ◽  
Vol 27 (11) ◽  
pp. 1-12
Author(s):  
Giovanni Gómez-Gras ◽  
Marco A. Pérez ◽  
Jorge Fábregas-Moreno ◽  
Guillermo Reyes-Pozo

Purpose This paper aims to investigate the quality of printed surfaces and manufacturing tolerances by comparing the cylindrical cavities machined in parts obtained by fused deposition modeling (FDM) with the holes manufactured during the printing process itself. The comparison focuses on the results of roughness and tolerances, intending to obtain practical references when making assemblies. Design/methodology/approach The experimental approach focuses on the comparison of the results of roughness and tolerances of two manufacturing strategies: geometric volumes with a through-hole and the through-hole machined in volumes that were initially printed without the hole. Throughout the study, both alternates are explained to make appropriate recommendations. Findings The study shows the best combinations of technological parameters, both machining and three-dimensional printing, which have been decisive for obtaining successful results. These conclusive results allow enunciating recommendations for use in the industrial environment. Originality/value This paper fulfills an identified need to study the dimensional accuracy of the geometries obtained by additive manufacturing, as no experimental evidence has been found of studies that directly address the problem of the FDM-printed part with geometric and dimensional tolerances and desirable surface quality for assembly.


2013 ◽  
Vol 589-590 ◽  
pp. 194-197 ◽  
Author(s):  
Peng Jia

For the technology of diamond cutting of optical glass, the machinability of glass is poor, which hindering the practical application of this technology. In order to investigate and ameliorate the machinability of glass, and achieve optical parts with the satisfied surface quality and dimensional accuracy, this paper first conducted SF6 indentation experiment by Vickers microhardness instrument, and then the scratching tests with increasing depths of cut were conducted on glass SF6 to evaluate the influence of the cutting fluid properties on the machinability of glass. Based on this, turning tests were carried out, and the surface quality of SF6 was assessed based on the detections of the machined surfaces roughness. Experimental results indicated that compared with the process of dry cutting, the machinability of glass SF6 can be improved by using the cutting fluid


Author(s):  
Jon Iñaki Arrizubieta ◽  
Magdalena Cortina ◽  
Jose Exequiel Ruiz ◽  
Aitzol Lamikiz

The present work proposes a novel manufacturing technique based on the combination of Laser Metal Deposition, Laser Beam Machining and Laser Polishing processes for the complete manufacturing of complex parts. Therefore, the complete process is based on the application of a laser heat source both for the building of the preform shape of the part by additive manufacturing and for the finishing operations. Their combination enables to manufacture near-net-shape parts and afterwards, remove the excess material via laser machining, which has resulted to be capable of eliminating the waviness resulting from the additive process. Besides, surface quality is improved via laser polishing to reduce the roughness of the final part. Therefore, conventional machining operations are eliminated, what results in a much cleaner process. In order to validate the capability of this new approach, the dimensional accuracy and surface quality of the resulting parts are evaluated. The process has been validated on an Inconel 718 test part, where a previously additively built up part has been finished by means of laser machining and laser polishing.


2021 ◽  
Vol 70 ◽  
pp. 290-299
Author(s):  
Binnur Sagbas ◽  
Beril Eker Gümüş ◽  
Yusuf Kahraman ◽  
Denis P. Dowling

2014 ◽  
Vol 609-610 ◽  
pp. 1515-1520 ◽  
Author(s):  
Wei Dong Yang ◽  
Zhan Qun Shi ◽  
Li Li

Pattenless Casting Manufacturing (PCM) technique is a kind of Rapid Prototyping based on droplet injection, using discrete nozzle to jet the catalyst. The quality of scanning lines has the most important effect on the sand strength, its surface quality and dimensional accuracy. The penetration and curing rules of the catalyst in the resined-sand particles are the main factors to determine the shape of the scanning lines. In order to study the penetration rules of the catalyst in the resined-sand, the penetration process of a single droplet and scanning lines are analyzed theoretically and verified by experiments. The important parameters of the forming process are determined based on the research and experimental results. It will provide the foundation to improve the forming quality of PCM technique.


2013 ◽  
Vol 770 ◽  
pp. 234-238 ◽  
Author(s):  
Peng Jia

For the technology of diamond cutting of optical glass, the machinability of glass is poor, which hindering the practical application of this technology. In order to investigate and ameliorate the machinability of glass, and achieve optical parts with the satisfied surface quality and dimensional accuracy, this paper first conducted SF6 indentation experiment by Vickers microhardness instrument, and then the scratching tests with increasing depths of cut were conducted on glass SF6 to evaluate the influence of the cutting fluid properties on the machinability of glass. Based on this, turning tests were carried out, and the surface quality of SF6 was assessed based on the detections of the machined surfaces roughness. Experimental results indicated that compared with the process of dry cutting, the machinability of glass SF6 can be improved by using the cutting fluid.


Sign in / Sign up

Export Citation Format

Share Document