Scratching Experimental Research on Critical Cut Depth of Glass BK7

2013 ◽  
Vol 589-590 ◽  
pp. 194-197 ◽  
Author(s):  
Peng Jia

For the technology of diamond cutting of optical glass, the machinability of glass is poor, which hindering the practical application of this technology. In order to investigate and ameliorate the machinability of glass, and achieve optical parts with the satisfied surface quality and dimensional accuracy, this paper first conducted SF6 indentation experiment by Vickers microhardness instrument, and then the scratching tests with increasing depths of cut were conducted on glass SF6 to evaluate the influence of the cutting fluid properties on the machinability of glass. Based on this, turning tests were carried out, and the surface quality of SF6 was assessed based on the detections of the machined surfaces roughness. Experimental results indicated that compared with the process of dry cutting, the machinability of glass SF6 can be improved by using the cutting fluid

2013 ◽  
Vol 770 ◽  
pp. 234-238 ◽  
Author(s):  
Peng Jia

For the technology of diamond cutting of optical glass, the machinability of glass is poor, which hindering the practical application of this technology. In order to investigate and ameliorate the machinability of glass, and achieve optical parts with the satisfied surface quality and dimensional accuracy, this paper first conducted SF6 indentation experiment by Vickers microhardness instrument, and then the scratching tests with increasing depths of cut were conducted on glass SF6 to evaluate the influence of the cutting fluid properties on the machinability of glass. Based on this, turning tests were carried out, and the surface quality of SF6 was assessed based on the detections of the machined surfaces roughness. Experimental results indicated that compared with the process of dry cutting, the machinability of glass SF6 can be improved by using the cutting fluid.


2013 ◽  
Vol 579-580 ◽  
pp. 16-20
Author(s):  
Peng Jia

For the technology of diamond cutting of optical glass, the machinability of glass is poor, which hindering the practical application of this technology. In order to investigate and ameliorate the machinability of glass, and achieve optical parts with the satisfied surface quality and dimensional accuracy, this paper first conducted SF6 indentation experiment by Vickers microhardness instrument, and then the scratching tests with increasing depths of cut were conducted on glass SF6 to evaluate the influence of the cutting fluid properties on the machinability of glass. Based on this, turning tests were carried out, and the surface quality of SF6 was assessed based on the detections of the machined surfaces roughness. Experimental results indicated that compared with the process of dry cutting, the machinability of glass SF6 can be improved by using the cutting fluid.


2010 ◽  
Vol 431-432 ◽  
pp. 126-129 ◽  
Author(s):  
Ming Zhou ◽  
Peng Jia ◽  
Min Li

In diamond cutting of optical glasses, the magnitude of critical depth of cut for brittle-ductile transition is an important factor affecting the machinability of the work material in terms of production rate and surface quality. In this work, scratching tests with increasing depths of cut were conducted on glass BK7 to evaluate the influence of the cutting fluid properties on the critical depth of cut. Boric acid solutions of different concentrations were selected as cutting fluids in the tests. The resulting scratches were examined utilizing a white light interferometer and the values of the critical depth of cut were determined based on the observations of the micro-morphology of the scratch surfaces produced. Experimental results indicated that compared with the process without cutting fluid action, the critical depth of cut in diamond cutting of glass BK7 can be increased by using boric acid solution as the cutting fluid.


2013 ◽  
Vol 589-590 ◽  
pp. 480-484 ◽  
Author(s):  
Peng Jia

In diamond cutting of optical glasses, the magnitude of critical depth of cut for brittle-ductile transition is an important factor affecting the machinability of the work material in terms of production rate and surface quality. In this work, scratching tests with increasing depths of cut were conducted on glass BK7 to evaluate the influence of the cutting fluid properties on the critical depth of cut. Boric acid solutions of different concentrations were selected as cutting fluids in the tests. The resulting scratches were examined utilizing a white light interferometer and the values of the critical depth of cut were determined based on the observations of the micro-morphology of the scratch surfaces produced. Experimental results indicated that compared with the process without cutting fluid action, the critical depth of cut in diamond cutting of glass BK7 can be increased by using boric acid solution as the cutting fluid.


2009 ◽  
Vol 626-627 ◽  
pp. 47-52 ◽  
Author(s):  
Ming Zhou ◽  
P. Jia ◽  
M. Li

Glass possesses poor machinability in diamond cutting due to its high hardness and high brittleness. In order to investigate the effect of cutting fluids on the machinability of glass, this paper first conducted soda-lime indentation experiment, and then examined the resulting indentation by optical microscope. Based on this, turning tests were carried out to evaluate the influence of the cutting fluid properties on the machinability of glass. Boric acid solutions were selected as cutting fluids in the tests. The surface processing quality of soda-lime was assessed based on the observations of the micro- morphology of the turned surfaces utilizing AFM. Experimental results indicated that compared with the process without cutting fluid action, the machinability of glass soda-lime can be improved by using boric acid solution as the cutting fluid.


2013 ◽  
Vol 770 ◽  
pp. 230-233 ◽  
Author(s):  
Peng Jia

In diamond cutting of optical glasses, the magnitude of critical depth of cut for brittle-ductile transition is an important factor affecting the machinability of the work material in terms of production rate and surface quality. In this work, scratching tests with increasing depths of cut were conducted on glass BK7 to evaluate the influence of the cutting fluid properties on the critical depth of cut. Boric acid solutions of different concentrations were selected as cutting fluids in the tests. The resulting scratches were examined utilizing a white light interferometer and the values of the critical depth of cut were determined based on the observations of the micro-morphology of the scratch surfaces produced. Experimental results indicated that compared with the process without cutting fluid action, the critical depth of cut in diamond cutting of glass BK7 can be increased by using boric acid solution as the cutting fluid.


2013 ◽  
Vol 579-580 ◽  
pp. 97-100
Author(s):  
Peng Jia

In diamond cutting of optical glasses, the magnitude of critical depth of cut for brittle-ductile transition is an important factor affecting the machinability of the work material in terms of production rate and surface quality. In this work, scratching tests with increasing depths of cut were conducted on glass BK7 to evaluate the influence of the cutting fluid properties on the critical depth of cut. Boric acid solutions of different concentrations were selected as cutting fluids in the tests. The resulting scratches were examined utilizing a white light interferometer and the values of the critical depth of cut were determined based on the observations of the micro-morphology of the scratch surfaces produced. Experimental results indicated that compared with the process without cutting fluid action, the critical depth of cut in diamond cutting of glass BK7 can be increased by using boric acid solution as the cutting fluid.


2021 ◽  
Vol 27 (11) ◽  
pp. 1-12
Author(s):  
Giovanni Gómez-Gras ◽  
Marco A. Pérez ◽  
Jorge Fábregas-Moreno ◽  
Guillermo Reyes-Pozo

Purpose This paper aims to investigate the quality of printed surfaces and manufacturing tolerances by comparing the cylindrical cavities machined in parts obtained by fused deposition modeling (FDM) with the holes manufactured during the printing process itself. The comparison focuses on the results of roughness and tolerances, intending to obtain practical references when making assemblies. Design/methodology/approach The experimental approach focuses on the comparison of the results of roughness and tolerances of two manufacturing strategies: geometric volumes with a through-hole and the through-hole machined in volumes that were initially printed without the hole. Throughout the study, both alternates are explained to make appropriate recommendations. Findings The study shows the best combinations of technological parameters, both machining and three-dimensional printing, which have been decisive for obtaining successful results. These conclusive results allow enunciating recommendations for use in the industrial environment. Originality/value This paper fulfills an identified need to study the dimensional accuracy of the geometries obtained by additive manufacturing, as no experimental evidence has been found of studies that directly address the problem of the FDM-printed part with geometric and dimensional tolerances and desirable surface quality for assembly.


2005 ◽  
Vol 291-292 ◽  
pp. 133-138
Author(s):  
Fei Hu Zhang ◽  
L.J. Li ◽  
Shen Dong

It is a cost-effective technology to obtain aspheric optics made from optical glass and other brittle materials using pressing mould. The optical quality of molded optics is determined mostly by the surface quality of the mould, which means poor mould surface with lots of cutter marks will result in adhesion phenomena and error replication between the optics and mould. [1] In this article, a chatter model about parallel grinding system was presented, and the reasons of chatter induced by velocity feed back was analyzed and simulated. By using parallel grinding system integrated ELID technology, and wheel with greater cross-section radius in rough grinding and constant grinding velocity in fine grinding, the amplitude of cutter marks in the surface of mould was minimized and the quality of the mould surface was improved.


Sign in / Sign up

Export Citation Format

Share Document