scholarly journals Combination of Laser Material Deposition and Laser Surface processes for the manufacture of sculptured surface components

Author(s):  
Jon Iñaki Arrizubieta ◽  
Magdalena Cortina ◽  
Jose Exequiel Ruiz ◽  
Aitzol Lamikiz

The present work proposes a novel manufacturing technique based on the combination of Laser Metal Deposition, Laser Beam Machining and Laser Polishing processes for the complete manufacturing of complex parts. Therefore, the complete process is based on the application of a laser heat source both for the building of the preform shape of the part by additive manufacturing and for the finishing operations. Their combination enables to manufacture near-net-shape parts and afterwards, remove the excess material via laser machining, which has resulted to be capable of eliminating the waviness resulting from the additive process. Besides, surface quality is improved via laser polishing to reduce the roughness of the final part. Therefore, conventional machining operations are eliminated, what results in a much cleaner process. In order to validate the capability of this new approach, the dimensional accuracy and surface quality of the resulting parts are evaluated. The process has been validated on an Inconel 718 test part, where a previously additively built up part has been finished by means of laser machining and laser polishing.

Materials ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1247 ◽  
Author(s):  
Jon Arrizubieta ◽  
Magdalena Cortina ◽  
Jose Ruiz ◽  
Aitzol Lamikiz

The present work proposes a novel manufacturing technique based on the combination of Laser Metal Deposition, Laser Beam Machining, and laser polishing processes for the complete manufacturing of complex parts. Therefore, the complete process is based on the application of a laser heat source both for the building of the preform shape of the part by additive manufacturing and for the finishing operations. Their combination enables the manufacture of near-net-shape parts and afterwards removes the excess material via laser machining, which has proved to be capable of eliminating the waviness resulting from the additive process. Besides, surface quality is improved via laser polishing so that the roughness of the final part is reduced. Therefore, conventional machining operations are eliminated, which results in a much cleaner process. To validate the capability of this new approach, the dimensional accuracy and surface quality as well as the microstructure of the resulting parts are evaluated. The process has been validated on an Inconel 718 test part, where a previously additively built-up part has been finished by means of laser machining and laser polishing.


Author(s):  
Wojciech S. Gora ◽  
Yingtao Tian ◽  
Marcus Ardron ◽  
Philip Prangnell ◽  
Nicholas J. Weston ◽  
...  

2021 ◽  
Vol 27 (11) ◽  
pp. 1-12
Author(s):  
Giovanni Gómez-Gras ◽  
Marco A. Pérez ◽  
Jorge Fábregas-Moreno ◽  
Guillermo Reyes-Pozo

Purpose This paper aims to investigate the quality of printed surfaces and manufacturing tolerances by comparing the cylindrical cavities machined in parts obtained by fused deposition modeling (FDM) with the holes manufactured during the printing process itself. The comparison focuses on the results of roughness and tolerances, intending to obtain practical references when making assemblies. Design/methodology/approach The experimental approach focuses on the comparison of the results of roughness and tolerances of two manufacturing strategies: geometric volumes with a through-hole and the through-hole machined in volumes that were initially printed without the hole. Throughout the study, both alternates are explained to make appropriate recommendations. Findings The study shows the best combinations of technological parameters, both machining and three-dimensional printing, which have been decisive for obtaining successful results. These conclusive results allow enunciating recommendations for use in the industrial environment. Originality/value This paper fulfills an identified need to study the dimensional accuracy of the geometries obtained by additive manufacturing, as no experimental evidence has been found of studies that directly address the problem of the FDM-printed part with geometric and dimensional tolerances and desirable surface quality for assembly.


Fractals ◽  
2019 ◽  
Vol 27 (02) ◽  
pp. 1950013 ◽  
Author(s):  
AHMAD THUFFAIL THASTHAKEER ◽  
ALI AKHAVAN FARID ◽  
CHANG TECK SENG ◽  
HAMIDREZA NAMAZI

Analysis of the machined surface is one of the major issues in machining operations. On the other hand, investigating about the variations of cutting forces in machining operation has great importance. Since variations of cutting forces affect the surface quality of machined workpiece, therefore, analysis of the correlation between cutting forces and surface roughness of machined workpiece is very important. In this paper, we employ fractal analysis in order to investigate about the complex structure of cutting forces and relate them to the surface quality of machined workpiece. The experiments have been conducted in different conditions that were selected based on cutting depths, type of cutting tool (serrated versus. square end mills) and machining conditions (wet and dry machining). The result of analysis showed that among all comparisons, we could only see the correlation between complex structure of cutting force and the surface roughness of machined workpiece in case of using serrated end mill in wet machining condition. The employed methodology in this research can be widely applied to other types of machining operations to analyze the effect of variations of different parameters on variability of cutting forces and surface roughness of machined workpiece and then investigate about their correlation.


Fractals ◽  
2019 ◽  
Vol 27 (06) ◽  
pp. 1950087 ◽  
Author(s):  
ASHFAQ AHAMED ◽  
ATHIF AHAMED ◽  
DILAN KATUWAWALA ◽  
TEOH TIONG EE ◽  
ZI HAN TAN ◽  
...  

Drilling is a famous and widely used machining operation to make holes in the workpiece. The size and surface quality of drilled hole are two factors that should be considered mainly. In this research, we examine the effect of different machining parameters and conditions on the surface quality of generated hole in drilling operation. For this purpose, we employ fractal theory and investigate how the variations of depth of cut and spindle speed affect the complexity of surface texture of drilled holes in wet and dry machining conditions. Based on the obtained results, the increment of depth of cut and spindle speed in case of wet and dry machining causes lower complexity on the generated surface from drilling. In addition, the generated surface from dry machining is more complex than the generated surface from wet machining. The obtained method in this research can be applied to other machining operations in order to investigate the effect of machining parameters and conditions on the surface quality of machined workpiece.


2013 ◽  
Vol 589-590 ◽  
pp. 194-197 ◽  
Author(s):  
Peng Jia

For the technology of diamond cutting of optical glass, the machinability of glass is poor, which hindering the practical application of this technology. In order to investigate and ameliorate the machinability of glass, and achieve optical parts with the satisfied surface quality and dimensional accuracy, this paper first conducted SF6 indentation experiment by Vickers microhardness instrument, and then the scratching tests with increasing depths of cut were conducted on glass SF6 to evaluate the influence of the cutting fluid properties on the machinability of glass. Based on this, turning tests were carried out, and the surface quality of SF6 was assessed based on the detections of the machined surfaces roughness. Experimental results indicated that compared with the process of dry cutting, the machinability of glass SF6 can be improved by using the cutting fluid


Fractals ◽  
2019 ◽  
Vol 27 (04) ◽  
pp. 1950054 ◽  
Author(s):  
HAMIDREZA NAMAZI ◽  
ALI AKHAVAN FARID ◽  
TECK SENG CHANG

Analysis of the surface quality of workpiece is one of the major works in machining operations. Variations of cutting force is an important factor that highly affects the quality of machined workpiece during operation. Therefore, investigating about the variations of cutting forces is very important in machining operation. In this paper, we employ fractal analysis in order to investigate the relation between complex structure of cutting force and surface roughness of machined surface in end milling operation. We run the machining operation in different conditions in which cutting depths, type of cutting tool (serrated versus square end mills) and machining conditions (wet and dry machining) change. Based on the obtained results, we observed the relation between complexity of cutting force and surface roughness of generated surface of machined workpiece due to engagement with the flute surface of end mill, in case of using square end mill in dry machining condition, and also in case of using serrated end mill in wet machining condition. The fractal approach that was employed in this research can be potentially examined in case of other machining operations in order to investigate the possible relation between complex structure of cutting force and surface quality of machined workpiece.


2021 ◽  
Vol 70 ◽  
pp. 290-299
Author(s):  
Binnur Sagbas ◽  
Beril Eker Gümüş ◽  
Yusuf Kahraman ◽  
Denis P. Dowling

2014 ◽  
Vol 609-610 ◽  
pp. 1515-1520 ◽  
Author(s):  
Wei Dong Yang ◽  
Zhan Qun Shi ◽  
Li Li

Pattenless Casting Manufacturing (PCM) technique is a kind of Rapid Prototyping based on droplet injection, using discrete nozzle to jet the catalyst. The quality of scanning lines has the most important effect on the sand strength, its surface quality and dimensional accuracy. The penetration and curing rules of the catalyst in the resined-sand particles are the main factors to determine the shape of the scanning lines. In order to study the penetration rules of the catalyst in the resined-sand, the penetration process of a single droplet and scanning lines are analyzed theoretically and verified by experiments. The important parameters of the forming process are determined based on the research and experimental results. It will provide the foundation to improve the forming quality of PCM technique.


Sign in / Sign up

Export Citation Format

Share Document