scholarly journals BIOETHANOL PRODUCTION FROM COCONUT HUSK USING THE WET GAMMA IRADIATION METHOD

2021 ◽  
Vol 14 (2) ◽  
pp. 43
Author(s):  
Putra Oktavianto ◽  
Risdiyana Setiawan ◽  
Ilhami Ariyanti ◽  
Muhammad Fadhil Jamil

BIOETHANOL PRODUCTION FROM COCONUT HUSK USING the WET GAMMA IRRADIATION METHOD. The use of coconut husk has only been used as a material for making handicrafts such as ropes, brooms, mats, and others or just burned. The combustion of coconut husk can cause air pollution. In fact, coconut husk can be used as a raw material for bioethanol production so that the beneficial value of coconut husk will also increase. One way of bioethanol production from coconut husk is by irradiating the coconut husk. The coconut husk irradiation technique to be carried out in this study is the wet irradiation technique. Wet irradiation is carried out to accelerate the process of bioethanol production because at the time of irradiation, cellulose has been hydrolyzed and glucose has been formed so that it is more efficient in time and use of the material so that the cellulose hydrolysis process is not necessary. The coconut husk samples were wet because they were mixed with 4% NaOH and were irradiated using a gamma irradiator from STTN-BATAN Yogyakarta with a dose of 30 kGy and 50 kGy and 0 kGy (or without irradiation). Then the sample is fermented with the fungus Saccharomyces Cerevisiae from tape yeast to form ethanol. Ethanol is purified and then analyzed for concentrations using pycnometric and refractometric methods. The result is that the highest ethanol content is without irradiation (0 kGy), this is due to the low dosage used. However, the main point in this wet method research is evidence of hydrolysis of cellulose by the formation of gluoxane after irradiated wet coconut husk, and with Fehling A and B analysis, brown deposits are seen proving that glucose has been formed.

Author(s):  
Dwi Anna Anggorowati ◽  
Sriliani Sriliani ◽  
Anis Artiyani ◽  
Harimbi Setyawati ◽  
Kevin J

Coconut husk waste is waste that has not been used optimally, generally only as a craft material. Seeing the composition of coconut husk, it has the potential to be used as an alternative fuel, one of which is to produce bioethanol products. The purpose of this research was to utilize coconut husk waste as raw material for bioethanol production and to assess the effect of the number of enzymes and time of hydrolysis on the glucose levels produced. In this research, the authors focused on obtaining glucose levels from coconut husks by hydrolysis using cellulase enzymes with an activity of 700 EGU/g. The variations used in this research were the volume of cellulase enzymes (2, 3, 4, 5, 6) ml and the hydrolysis time (4, 8, 12) hours. After the coconut husk undergoes physical and chemical treatment using 10% NaOH, there is a decrease in lignin levels from 44% to 14% and there is an increase in cellulose levels from 24% to 38%, and the use of a cellulase enzyme volume of 2 ml with a hydrolysis time of 4 hours was more optimal with a glucose level of 0.32%.


2011 ◽  
pp. 223-230
Author(s):  
Darjana Ivetic ◽  
Vesna Vasic ◽  
Marina Sciban ◽  
Mirjana Antov

This paper analyzes some chemical pretreatments of sugar beet shreds concerning generated waste flows and yield of reducing sugars obtained by enzymatic hydrolysis of pretreated material. Waste flows produced in pretreatments of sugar beet shreds originated from pectin and lignin removal from raw material. Suitability of substrates prepared in single and two-step pretreatment procedure for enzymatic hydrolysis was determined based on the yield of reducing sugars released by cellulase action on them, while different possibilities of processing of wastewaters were discussed based on the characteristic of waste flows.


2018 ◽  
Vol 8 (3) ◽  
pp. 94
Author(s):  
Ni Ketut Sari

Elephant grass is available continuously and in abundance, but has only been utilized as animal feed, and is sometimes regarded as a nuisance. However, elephant grass contains cellulose, glucose and starch that can be utilized as raw materials for ethanol production. The concentration of ethanol obtained from a study on the production of bioethanol from elephant grass was between 7-11%. To improve the purity of the ethanol, a batch distillation separation process was performed.  In the study of bioethanol production from elephant grass, a hydrolysis process was performed at the following fixed condition 30 oC temperature, 7 liter of water, 1 hour of hydrolysis time, while the following variables were changed fermentation period of 4, 5, 6, 7, and 8 days, and starter concentration of 8, 10, and 12%. From the bioethanol production study, the following best condition was obtained: 200 gram of grass, 10% Saccharomyces cerevisiae starter for 6 days. This condition produced 27.71% ethanol, with a 8.09% residual glucose. To obtain a higher purity ethanol product, a subsequent separation using batch distillation was performed, resulting in 90-95% ethanol. Therefore, elephant grass can be used as an alternative raw material for bioethanol production.Keywords: bioethanol, fermentation, hydrolysis, elephant grass Abstrak Ketersediaan rumput gajah dapat diperoleh secara kontinu dan melimpah, seringkali hanya digunakan sebagai makanan ternak, dan terkadang rumput gajah juga dianggap sebagai tanaman pengganggu. Rumput gajah mempunyai kadar selulosa, glukosa, pati yang dapat digunakan sebagai salah satu bahan penghasil etanol. Kadar etanol yang diperoleh dari kajian produksi bioetanol dari rumput gajah antara 7-11%. Untuk meningkatkan kemurnian kadar etanol dilakukan pemisahan menggunakan distilasi batch. Dalam penelitian kajian produksi bioetanol dari rumput gajah dilakukan proses hidrolisis pada kondisi tetap suhu 30 oC, air 7 liter, waktu hidrolisis 1 jam, dan kondisi berubah yaitu berat rumput gajah 50, 100, 150, 200, 250, dan 300 gram, volume larutan HCl 10, 20, 30, 40, 50 mL. Kemudian dilanjutkan proses fermentasi pada kondisi tetap suhu 30 oC, pH 4,5, volume fermentasi 500 mL dan kondisi berubah yaitu waktu fermentasi 4, 5, 6, 7, 8 hari, dan starter 8, 10, dan 12%. Dari penelitian kajian produksi bioetanol dari rumput gajah diperoleh hasil terbaik  yaitu: berat rumput gajah 200 gram, starter Saccharomyces cerevisiae 10% selama 6 hari, menghasilkan etanol sebesar 27,71% dan kadar glukosa sisa 8,09%. Untuk memperoleh produk etanol yang lebih murni dilakukan proses pemisahan lanjutan dengan distilasi batch, setelah dilakukan pemisahan lanjut diperoleh kadar etanol 90–95%, sehingga  rumput gajah dapat digunakan sebagai bahan baku alternatif pembuatan bioetanol.Kata Kunci: bioetanol, fermentasi, hidrolisis, rumput gajah.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 245
Author(s):  
Hyung-Eun An ◽  
Kang Hyun Lee ◽  
Ye Won Jang ◽  
Chang-Bae Kim ◽  
Hah Young Yoo

As greenhouse gases and environmental pollution become serious, the demand for alternative energy such as bioethanol has rapidly increased, and a large supply of biomass is required for bioenergy production. Lignocellulosic biomass is the most abundant on the planet and a large part of it, the second-generation biomass, has the advantage of not being a food resource. In this study, Sicyos angulatus, known as an invasive plant (harmful) species, was used as a raw material for bioethanol production. In order to improve enzymatic hydrolysis, S. angulatus was pretreated with different NaOH concentration at 121 °C for 10 min. The optimal NaOH concentration for the pretreatment was determined to be 2% (w/w), and the glucan content (GC) and enzymatic digestibility (ED) were 46.7% and 55.3%, respectively. Through NaOH pretreatment, the GC and ED of S. angulatus were improved by 2.4-fold and 2.5-fold, respectively, compared to the control (untreated S. angulatus). The hydrolysates from S. angulatus were applied to a medium for bioethanol fermentation of Saccharomyces cerevisiae K35. Finally, the maximum ethanol production was found to be 41.3 g based on 1000 g S. angulatus, which was 2.4-fold improved than the control group.


2013 ◽  
Vol 127 ◽  
pp. 500-507 ◽  
Author(s):  
Reeta Rani Singhania ◽  
Anil Kumar Patel ◽  
Rajeev K. Sukumaran ◽  
Christian Larroche ◽  
Ashok Pandey

2017 ◽  
Vol 39 (4) ◽  
pp. 423 ◽  
Author(s):  
George Meredite Cunha de Castro ◽  
Norma Maria Barros Benevides ◽  
Maulori Curié Cabral ◽  
Rafael De Souza Miranda ◽  
Enéas Gomes Filho ◽  
...  

 The seaweeds are bio-resource rich in sulfated and neutral polysaccharides. The tropical seaweed species used in this study (Solieria filiformis), after dried, shows 65.8% (w/w) carbohydrate, 9.6% (w/w) protein, 1.7% (w/w) lipid, 7.0% (w/w) moisture and 15.9% (w/w) ash. The dried seaweed was easily hydrolyzed under mild conditions (0.5 M sulfuric acid, 20 min.), generating fermentable monosaccharides with a maximum hydrolysis efficiency of 63.21%. Galactose and glucose present in the hydrolyzed were simultaneously fermented by Saccharomyces cerevisiae when the yeast was acclimated to galactose and cultivated in broth containing only galactose. The kinetic parameters of the fermentation of the seaweed hydrolyzed were Y(P⁄S) = 0.48 ± 0.02 g.g−1, PP = 0.27 ± 0.04 g.L−1.h−1, h = 94.1%, representing a 41% increase in bioethanol productivity. Therefore, S. filiformis was a promising renewable resource of polysaccharides easily hydrolyzed, generating a broth rich in fermentable monosaccharides for ethanol production. 


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3559 ◽  
Author(s):  
Alfredo Oliva-Taravilla ◽  
Cristhian Carrasco ◽  
Leif J. Jönsson ◽  
Carlos Martín

The enzymatic hydrolysis of cellulose is inhibited by non-productive adsorption of cellulases to lignin, and that is particularly problematic with lignin-rich materials such as softwood. Although conventional surfactants alleviate non-productive adsorption, using biosurfactants in softwood hydrolysis has not been reported. In this study, the effects of four biosurfactants, namely horse-chestnut escin, Pseudomonas aeruginosa rhamnolipid, and saponins from red and white quinoa varieties, on the enzymatic saccharification of steam-pretreated spruce were investigated. The used biosurfactants improved hydrolysis, and the best-performing one was escin, which led to cellulose conversions above 90%, decreased by around two-thirds lignin inhibition of Avicel hydrolysis, and improved hydrolysis of pretreated spruce by 24%. Red quinoa saponins (RQS) addition resulted in cellulose conversions above 80%, which was around 16% higher than without biosurfactants, and it was more effective than adding rhamnolipid or white quinoa saponins. Cellulose conversion improved with the increase in RQS addition up to 6 g/100 g biomass, but no significant changes were observed above that dosage. Although saponins are known to inhibit yeast growth, no inhibition of Saccharomyces cerevisiae fermentation of hydrolysates produced with RQS addition was detected. This study shows the potential of biosurfactants for enhancing the enzymatic hydrolysis of steam-pretreated softwood.


2020 ◽  
Vol 32 (6) ◽  
pp. 1404-1408
Author(s):  
Taslim ◽  
Dian Halimah Batubara ◽  
Seri Maulina ◽  
Iriany ◽  
Okta Bani

Cogon grass (Imperata cylindrica) is convertible into glucose by hydrolysis process, which usually requires a catalyst. A solid acid catalyst of sulfonated carbon was used in this work. This study aimed to observe the viability of candlenut shell as carbonaceous source in solid acid catalyst production and to characterize the sulfonated carbon. The carbonization was performed at 250-550 ºC for 4 h, while sulfonation was carried out at 100-180 ºC for 6 h. Sulfonated carbon was then characterized by H+ activity/acid density test, scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) and Fourier transform infrared (FTIR) spectroscopy. Sulfonated carbon was then tested as a heterogeneous catalyst for hydrolysis reaction. The reaction was performed in a stainless steel batch reactor at 100 ºC for 6 h. Glucose formed by hydrolysis was measured by dinitrosalicylic acid (DNS) method. Results of this study suggested that sulfonated carbon derived from candlenut shell may be used as a catalyst for cogon grass cellulose hydrolysis to produce glucose


2011 ◽  
Vol 8 (4) ◽  
pp. 1951-1957 ◽  
Author(s):  
G. Sathya Geetha ◽  
A. Navaneetha Gopalakrishnan

The state of art for the bioethanol production from paper fibre residue using diluted alkali hydrolysis and fermentation processes was evaluated. Hydrolysis of paper fibre residue with diluted sodium hydroxide at various time period, temperature and concentration were investigated. The paper fibre residue was pre-steamed, impregnated with diluted NaOH (0 to 25%) and subsequently hydrolyzed in a reactor at temperatures that ranged between 30 to 50oC, for reaction time between 30 minutes to 150 minutes. The highest yield of monosaccharide (indicating the efficient hydrolysis of cellulose and hemi cellulose) was found at a temperature of 35oC for a reaction time of 90 minutes. Fermentability of hemicelluloses hydrolysate was tested using monosaccharide fermenting microorganismPenicillium chrysogenumandSaccharomyces cereviacea. The fermentability of the hydrolysate decreased strongly for hydrolysate produced at temperature higher than 50oC. The ethanol concentration of monosaccharide hydrolysate was found to be 34.06 g/L and the ethanol yield was 0.097 g/g.


Sign in / Sign up

Export Citation Format

Share Document