Experimental Study of Steel Fibre Bridging Action on Crack Propagation in Fibre Reinforced Concrete

Author(s):  
Zhi Hong Xu ◽  
Wen Yin Liang ◽  
Yu Jing Liang
2006 ◽  
Vol 324-325 ◽  
pp. 1067-1070 ◽  
Author(s):  
Zhi Hong Xu ◽  
Wen Yin Liang ◽  
Yu Jing Liang

In this paper the bridging action of steel fibres on the model I crack propagation has been studied experimentally for steel fibre reinforced concrete (FRC). From the experimental results three main conclusions are obtained. First, the bridging action increases with the number of the steel fibres across the crack surface and the stress intensity factor near the crack tip decreases thereby. Second, bridging action increases with the strength of the matrix because the matrix with higher strength can provide stronger interfacial bond with steel fibres. Third, the interfacial bonding gets damaged when the steel fibres under cyclic loads and the bridging action degrades with the cycle number.


2010 ◽  
Vol 150-151 ◽  
pp. 825-828
Author(s):  
Yan Wang ◽  
Di Tao Niu ◽  
Yuan Yao Miao ◽  
Nai Qi Jiao

The concrete microstructure can affect its macroscopic properties, such as the strength and durability, etc. Based on the experimental study of cube compressive strength of steel fibre reinforced concrete, splitting tensile strength, flexural strength, and using by mercury intrusion method to test the pore structure of steel fibrous, this paper analyzes the influence of fibre on concrete pore structure. And then on mechanical properties of concrete from microcosmic perspective.


Sign in / Sign up

Export Citation Format

Share Document