Influence of Cooling Rate on the Size of the Precipitates and Thermal Characteristic of Al-Si Cast Alloys

Author(s):  
Rafal Maniara ◽  
Leszek A. Dobrzański ◽  
Jerry Sokolowski ◽  
Wojciech Kasprzak ◽  
Witold T. Kierkus
2006 ◽  
Vol 15-17 ◽  
pp. 59-64 ◽  
Author(s):  
Rafal Maniara ◽  
Leszek Adam Dobrzański ◽  
Jerry Sokolowski ◽  
Wojciech Kasprzak ◽  
Witold T. Kierkus

In this work effect of cooling rate on the size of the grains, SDAS, β phases and thermal characteristic results of Al-Si cast alloys have been described. The solidification process was studied using the cooling and crystallization curve at cooling rate ranging from 0,1 °Cs-1 up to 1 °Cs-1. The main observation made from this work was that when cooling rate is increased the aluminum dendrites nucleation temperature and solid fraction at the dendrite coherency point increases, which implies that mass feeding is extended. In addition to that, it was observed that solidus temperature and size of the β phases decreases when cooling rate increases. Investigations were showed, that the thermal modification could be quantitatively assessed by analysis of the crystallization curve.


1973 ◽  
Vol 23 (12) ◽  
pp. 535-540
Author(s):  
Hajime YAMADA ◽  
Motoyoshi ITO ◽  
Masao UKAI
Keyword(s):  

2005 ◽  
Vol 475-479 ◽  
pp. 2169-2172 ◽  
Author(s):  
Bing Lin Guo ◽  
Bo Li ◽  
Dongling Wang ◽  
Xiaojun Yu ◽  
Ji Fan Hu

In this paper, flakes of NdFeB cast alloys were prepared by using the strip casting technique. Microstructure and composition of phases in NdFeB SC flakes were studied by SEM and energy spectra. Especially, the influences of cooling rate on the microstructure of SC flakes were discussed, helping us to master strip casting technology. The results show that the cooling rate plays an important role in obtaining the perfect microstructure of SC flakes, which thickness is supposed not less than 0.32mm in these studies.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Hasan Akhyar

This experiment investigated the cooling curve behavior, hardness and microstructure of two aluminum alloys produced by casting process. There are Al-1.37Zn-1.19Si and Al-1.66Si-1.35Zn derived from melting and alloying a pure aluminum with ADC12 (Al-Si) ingot. Cooling curve recorded from both those two alloys with pouring temperature at 710 oC and the mold temperature kept constant at 220 oC. The result shows, a freezing range of Al-1.37Zn-1.19Si alloy is 643–348 oC and Al-1.66Si-1.35Zn alloy is 621–401 oC. Then cooling rate obtained for Al-1.37Zn-1.19Si is 55.56 oC/S, and Al-1.66Si-1.35Zn is 30.09 oC/S. TThe higher hardness is 40.42 BHN at Al 1.66 Si-1.35Zn, while the lower value is 34.62 BHN on Al-1,37Zn-1,19Si alloy. The hardness value found higher when cooling rate is shorted. The number of silicon present on microstructure is highest in Al-1.37Zn-1.19Si alloy but the hardness value decreases. This is caused by the distribution of the silicon content in the alloy is irregular. It was found that the solidification rate had an effect on hardness, where the freezing rate obtained a high hardness value.


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Hasan Akhyar

This experiment investigated the cooling curve behavior, hardness and microstructure of two aluminum alloys produced by casting process. There are Al-1.37Zn-1.19Si and Al-1.66Si-1.35Zn derived from melting and alloying a pure aluminum with ADC12 (Al-Si) ingot. Cooling curve recorded from both those two alloys with pouring temperature at 710 oC and the mold temperature kept constant at 220 oC. The result shows, a freezing range of Al-1.37Zn-1.19Si alloy is 643–348 oC and Al-1.66Si-1.35Zn alloy is 621–401 oC. Then cooling rate obtained for Al-1.37Zn-1.19Si is 55.56 oC/S, and Al-1.66Si-1.35Zn is 30.09 oC/S. TThe higher hardness is 40.42 BHN at Al 1.66 Si-1.35Zn, while the lower value is 34.62 BHN on Al-1,37Zn-1,19Si alloy. The hardness value found higher when cooling rate is shorted. The number of silicon present on microstructure is highest in Al-1.37Zn-1.19Si alloy but the hardness value decreases. This is caused by the distribution of the silicon content in the alloy is irregular. It was found that the solidification rate had an effect on hardness, where the freezing rate obtained a high hardness value.


2015 ◽  
Vol 48 (8) ◽  
pp. 861-869 ◽  
Author(s):  
Baiwei Zhu ◽  
Peter Leisner ◽  
Salem Seifeddine ◽  
Anders E. W. Jarfors

Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1826 ◽  
Author(s):  
Zhen Xu ◽  
Claire Utton ◽  
Panos Tsakiropoulos

Alloying with Al, Cr, Sn, and Ti significantly improves the oxidation of Nb silicide-based alloys at intermediate and high temperatures. There is no agreement about what the concentration of Sn in the alloys should be. It has been suggested that with Sn ≤ 3 at.% the oxidation is improved and formation of the brittle A15-Nb3Sn compound is suppressed. Definite improvements in oxidation behaviour have been observed with 5 at.% Sn or even higher concentrations, up to 8 at.% Sn. The research reported in this paper is about three model alloys with low Sn concentration and nominal compositions Nb-24Ti-18Si-5Cr-2Sn (ZX3), Nb-24Ti-18Si-5Al-2Sn (ZX5), and Nb-24Ti-18Si-5Al-5Cr-2Sn (ZX7) that were studied to understand the effect of the 2 at.% Sn addition on as-cast and heat-treated microstructures and isothermal oxidation in air at 800 and 1200 °C for 100 h. There was macrosegregation of Si and Ti in the alloys ZX3 and ZX5 and only of Si in the alloy ZX7. The Nbss was stable in all alloys. Tin and Ti exhibited opposite partitioning behaviour in the Nbss. The βNb5Si3 was the primary phase in all three cast alloys and had partially transformed to αNb5Si3 in the alloy ZX3. Aluminium in synergy with Sn increased the sluggishness of the βNb5Si3 to αNb5Si3 transformation during solidification. After the heat treatment the transformation of βNb5Si3 to αNb5Si3 had been completed in all three alloys. Fine precipitates were observed inside some αNb5Si3 grains in the alloys ZX5 and ZX7. In the latter alloys the A15-Nb3X (X = Al, Si, and Sn) formed after the heat treatment, i.e., the synergy of Al and Sn promoted the stability of A15-Nb3X intermetallic in these Nb-silicide-based alloys even at this low Sn concentration. A Nbss + Nb5Si3 eutectic formed in all three alloys and there was evidence of anomalous eutectic in the parts of the alloys ZX3 and ZX7 that had solidified under high cooling rate and/or high melt undercooling. A very fine ternary Nbss + Nb5Si3 + NbCr2 eutectic was also observed in parts of the alloy ZX3 that had solidified under high cooling rate. At 800 °C none of the alloys suffered from catastrophic pest oxidation; ZX7 had a smaller oxidation rate constant. A thin Sn-rich layer formed continuously between the scale and Nbss in the alloys ZX3 and ZX5. At 1200 °C the scales formed on all three alloys spalled off, the alloys exhibited parabolic oxidation in the early stages followed by linear oxidation; the alloy ZX5 gave the smallest rate constant values. A thicker continuous Sn-rich zone formed between the scale and substrate in all three alloys. This Sn-rich zone was noticeably thicker near the corners of the specimen of the alloy ZX7 and continuous around the whole specimen. The Nb3Sn, Nb5Sn2Si, and NbSn2 compounds were observed in the Sn-rich zone. At both temperatures the scales formed on all three alloys consisted of Nb-rich and Nb and Si-rich oxides, and Ti-rich oxide also was formed in the scales of the alloys ZX3 and ZX7 at 1200 °C. The formation of a Sn-rich layer/zone did not prevent the contamination of the bulk of the specimens by oxygen, as both Nbss and Nb5Si3 were contaminated by oxygen, the former more severely than the latter.


Sign in / Sign up

Export Citation Format

Share Document