Two Domensional Simulation of Velocity Field of Two-Phase Flow for Gas and Solid in the Abrasive Air Jet Nozzle

Author(s):  
Chuan Zhen Huang ◽  
Rong Guo Hou ◽  
Zeng Wen Liu ◽  
Quan Lai Li ◽  
Hong Tao Zhu
2007 ◽  
Vol 359-360 ◽  
pp. 465-469
Author(s):  
Chuan Zhen Huang ◽  
Rong Guo Hou ◽  
Zeng Wen Liu ◽  
Quan Lai Li ◽  
Hong Tao Zhu

Simulation on velocity field of gas-solid flow in the abrasive air jet nozzle was studied by the computed fluid dynamics(CFD) software. The velocity field of the two-phase flow in the abrasive air jet nozzle can be obtained by means of simulation. The effect of the nozzle diameter on the velocity field shows that the velocity field in the nozzle with a smaller diameter is more well-distributed. The velocity distribution along the nozzle axis and the radial direction of the nozzle outlet was also simulated.


2007 ◽  
Vol 339 ◽  
pp. 453-457 ◽  
Author(s):  
Rong Guo Hou ◽  
Chuan Zhen Huang ◽  
Jun Wang ◽  
X.Y. Lu ◽  
Yan Xia Feng

Simulation of the velocity field of solid-liquid flow inside and outside the abrasive water jet nozzle was studied by the computational fluid dynamics software(CFD). The velocity field of the flow in the abrasive water jet (AWJ) nozzle was obtained. The results indicate that the swirl is produced in the nozzle and the abrasives are all distributed along the inner surface of the nozzle. The velocity at the center of the outlet face is the highest, while it is smallest at the both edge. The dispersion of the flow is happened when it flows out of the nozzle, but the flow velocity away from the outlet at a distance of about 4 times of the outlet diameter changes little. The fillet diameter, the inner cone angle, the length of mixing tube of the nozzle greatly affect the field of two-phase flow. The velocity of outlet increases with an increase in the fillet diameter, the flow becomes ease when the cone angle decreases, the mixing tube hampers the two-phase flowing.


2012 ◽  
Vol 516-517 ◽  
pp. 945-948
Author(s):  
Yu Chun Zhang ◽  
Zhen Bo Wang ◽  
You Hai Jin

Gas-solid two-phase flow of the quick-contact cyclone reactor used in FCC was simulated with the multi fluid Eulerian model, especially the velocity field and volume fraction of solid in the mixing chamber was researched. The results show that flow pattern and catalyst particles concentration are non-uniform in the direction of axial, radial and tangential. The tangential gas admission increases turbulent intensity, it has a great benefit on spreading the catalyst particles uniformly, enhancing gas-solid contact effect. This work could offer a base for the structure optimization of the quick-contact reactor.


Author(s):  
Yuki Kato ◽  
Rie Arai ◽  
Akiko Kaneko ◽  
Hideaki Monji ◽  
Yutaka Abe ◽  
...  

In a nuclear power plant, one of the important issues is an evaluation of the safety of the reactor core and its pipes when an earthquake occurs. Many researchers have conducted studies on constructions of plants. Consequently, there is some knowledge about earthquake-resisting designs. However the influence of an earthquake vibration on thermal fluid inside a nuclear reactor plant is not fully understood. Especially, there is little knowledge how coolant in a core response when large earthquake acceleration is added. Some studies about the response of fluid to the vibration were carried out. And it is supposed that the void fraction and/or the power of core are fluctuated with the oscillation by the experiments and numerical analysis. However the detailed mechanism about a kinetic response of gas and liquid phases is not enough investigated, therefore the aim of this study is to clarify the influence of vibration of construction on bubbly flow behavior. In order to investigate the influence of vibration of construction on bubbly flow behavior, we visualized bubbly flow in pipeline on which sine wave was applied. In a test section, bubbly flow was produced by injecting gas into liquid flow through a horizontal circular pipe. In order to vibrate the test section, an oscillating table was used. The frequency and acceleration of vibration added from the oscillating table was from 1.0 Hz to 10 Hz and . 0.4 G (1 G=9.8 m/s2) at each frequency. The test section and a high speed video camera were fixed on the oscillating table. Thus the relative velocity between the camera and the test section was ignored. PIV measurement was also conducted to investigate interaction between bubble motion and surround in flow structure. Liquid pressure was also measured at upstream and downstream of the test section. The effects of oscillation on bubbly flow were quantitatively evaluated by these pressure measurements and the velocity field. In the results, it was observed that the difference of bubble motion by changing oscillation frequency. Moreover it was suggested that the bubble deformation is correlated with the fluctuation of liquid velocity field around the bubble and the pressure gradient in the flow area. In addition, these experimental results were compared with numerical simulation by a detailed two-phase flow simulation code with an advanced interface tracking method, TPFIT. Numerical simulation was qualitatively agreed with experimental results.


2000 ◽  
Vol 20 (1Supplement) ◽  
pp. 339-342 ◽  
Author(s):  
Yasushi SAITO ◽  
Takashi HIBIKI ◽  
Kaichiro MISHIMA ◽  
Yoshiharu TOBITA ◽  
Tohru SUZUKI ◽  
...  

2006 ◽  
Vol 315-316 ◽  
pp. 150-153 ◽  
Author(s):  
Rong Guo Hou ◽  
Chuan Zhen Huang ◽  
Jun Wang ◽  
Yan Xia Feng ◽  
Hong Tao Zhu

Simulation on velocity field of gas-liquid flow in the abrasive water jet nozzle was studied by the computed fluid dynamics (CFD) software, The complex velocity field of the flow in the abrasive water jet nozzle can be obtained by means of simulation. The study on the effect of the nozzle inner cone angle on the velocity field shows that the cone angle affects the whirlpool’s intension and position of the whirlpool in the nozzle of abrasive water jet (AWJ), and it also affects velocity ‘s magnitude and distribution of the velocity on the cone surface.


Sign in / Sign up

Export Citation Format

Share Document