Effect of Lid Materials on the Solder Ball Reliability of Thermally Enhanced Flip-Chip Plastic Ball Grid Array Packages

Author(s):  
Yi-Ming Jen ◽  
Hsi Hsin Chien ◽  
Tsung-Shu Lin ◽  
Shih Hsiang Huang
2009 ◽  
Vol 32 (4) ◽  
pp. 901-908 ◽  
Author(s):  
Lei Nie ◽  
M. Osterman ◽  
Fubin Song ◽  
J. Lo ◽  
S.W.R. Lee ◽  
...  

2006 ◽  
Vol 306-308 ◽  
pp. 1043-1048
Author(s):  
Yi-Ming Jen ◽  
Hsi Hsin Chien ◽  
Tsung-Shu Lin ◽  
Shih Hsiang Huang

This research studied the thermal fatigue life for eutectic solder balls of thermally enhanced flip-chip plastic ball grid array (FC-PBGA) packages with different lid materials under thermal cycling tests. Three FC-PBGA packages with different lid materials, i.e., Al, AlSiC, and Cu, were utilized to examine the lid material effect on solder ball reliability. The cyclic stress/strain behavior for the packages was estimated by using the nonlinear finite element method. The eutectic solder was assumed to be elastic-plastic-creep. The stable stress/strain results obtained from FEM analysis were utilized to predict the thermal fatigue life of solder balls by using the Coffin-Manson prediction model. Simulation results showed that the fatigue life of the FC-PBGA package with a Cu lid was much shorter than FC-PBGA packages with other lid materials. The relatively shorter fatigue life for the FC-PBGA package with a Cu lid was due to the complex constrained behavior caused by the thermal mismatch between the lid, substrate and the printed circuit board. The difference was insignificant in the fatigue lives between the package with an Al lid and the conventional package.


Author(s):  
C.H. Zhong ◽  
Sung Yi

Abstract Ball shear forces of plastic ball grid array (PBGA) packages are found to decrease after reliability test. Packages with different ball pad metallurgy form different intermetallic compounds (IMC) thus ball shear forces and failure modes are different. The characteristic and dynamic process of IMC formed are decided by ball pad metallurgy which includes Ni barrier layer and Au layer thickness. Solder ball composition also affects IMC formation dynamic process. There is basically no difference in ball shear force and failure mode for packages with different under ball pad metallurgy before reliability test. However shear force decreased and failure mode changed after reliability test, especially when packages exposed to high temperature. Major difference in ball shear force and failure mode was found for ball pad metallurgy of Ni barrier layer including Ni-P, pure Ni and Ni-Co. Solder ball composition was found to affect the IMC formation rate.


Sign in / Sign up

Export Citation Format

Share Document