Studies by In Situ and Real-Time Synchrotron Imaging of Interface Dynamics and Defect Formation in Solidification Processing

Author(s):  
Bernard Billia ◽  
Henri Nguyen-Thi ◽  
Guillaume Reinhart ◽  
Nathalie Mangelinck-Noël ◽  
J. Gastaldi ◽  
...  
2006 ◽  
Vol 46 ◽  
pp. 1-10
Author(s):  
Bernard Billia ◽  
Henri Nguyen-Thi ◽  
Guillaume Reinhart ◽  
Nathalie Mangelinck-Noël ◽  
J. Gastaldi ◽  
...  

The solid microstructure built in the solid governs the properties of materials elaborated from the melt. In order to clarify the dynamical mechanisms controlling solidification processing, we use in situ and real-time synchrotron X-ray radiography at ESRF (European Synchrotron Radiation Facility) to analyze microstructure formation in thin aluminum alloys solidified in the Bridgman facility installed at the ID19 beamline. During directional solidification of Al - 3.5 wt% Ni alloys, global mechanical constraints induced by the shape are found to act on the solid microstructure. In particular, radiography videos of dendritic growth show disorientations of sidebranches induced by mechanical stresses. In the solidification of AlPdMn quasicrystals, live imaging reveals that facetted growth proceeds by the lateral motion of ledges at the solid-melt interface. When the solidification rate is increased, the kinetic undercooling becomes sufficient for grain nucleation and growth in the liquid. These grains develop specific features that can be attributed to grain competition and concomitant poisoning of growth caused by the rejection of aluminum in the melt.


2006 ◽  
Vol 508 ◽  
pp. 75-80 ◽  
Author(s):  
Guillaume Reinhart ◽  
Henri Nguyen-Thi ◽  
J. Gastaldi ◽  
Bernard Billia ◽  
Nathalie Mangelinck-Noël ◽  
...  

Solidification is a dynamic phenomena and, as a consequence, it is of major interest to be able to investigate this process by in situ and real time observation. With synchrotron sources, this can be achieved by applying X-ray Imaging techniques (Radiography and Topography). Hence it is possible to follow the dynamical selection of solidification pattern on metallic alloys and to observe strain effects during growth process. In this paper, we present results obtained by using separately the two imaging techniques for the study of the microstructure formation during Al – Ni alloys solidification.


Author(s):  
Guillaume Reinhart ◽  
Henri Nguyen-Thi ◽  
J. Gastaldi ◽  
Bernard Billia ◽  
Nathalie Mangelinck-Noël ◽  
...  

2018 ◽  
Author(s):  
Elaine A. Kelly ◽  
Judith E. Houston ◽  
Rachel Evans

Understanding the dynamic self-assembly behaviour of azobenzene photosurfactants (AzoPS) is crucial to advance their use in controlled release applications such as<i></i>drug delivery and micellar catalysis. Currently, their behaviour in the equilibrium <i>cis-</i>and <i>trans</i>-photostationary states is more widely understood than during the photoisomerisation process itself. Here, we investigate the time-dependent self-assembly of the different photoisomers of a model neutral AzoPS, <a>tetraethylene glycol mono(4′,4-octyloxy,octyl-azobenzene) </a>(C<sub>8</sub>AzoOC<sub>8</sub>E<sub>4</sub>) using small-angle neutron scattering (SANS). We show that the incorporation of <i>in-situ</i>UV-Vis absorption spectroscopy with SANS allows the scattering profile, and hence micelle shape, to be correlated with the extent of photoisomerisation in real-time. It was observed that C<sub>8</sub>AzoOC<sub>8</sub>E<sub>4</sub>could switch between wormlike micelles (<i>trans</i>native state) and fractal aggregates (under UV light), with changes in the self-assembled structure arising concurrently with changes in the absorption spectrum. Wormlike micelles could be recovered within 60 seconds of blue light illumination. To the best of our knowledge, this is the first time the degree of AzoPS photoisomerisation has been tracked <i>in</i><i>-situ</i>through combined UV-Vis absorption spectroscopy-SANS measurements. This technique could be widely used to gain mechanistic and kinetic insights into light-dependent processes that are reliant on self-assembly.


2017 ◽  
Vol 2017 (4) ◽  
pp. 5598-5617
Author(s):  
Zhiheng Xu ◽  
Wangchi Zhou ◽  
Qiuchen Dong ◽  
Yan Li ◽  
Dingyi Cai ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2830
Author(s):  
Sili Wang ◽  
Mark P. Panning ◽  
Steven D. Vance ◽  
Wenzhan Song

Locating underground microseismic events is important for monitoring subsurface activity and understanding the planetary subsurface evolution. Due to bandwidth limitations, especially in applications involving planetarily-distributed sensor networks, networks should be designed to perform the localization algorithm in-situ, so that only the source location information needs to be sent out, not the raw data. In this paper, we propose a decentralized Gaussian beam time-reverse imaging (GB-TRI) algorithm that can be incorporated to the distributed sensors to detect and locate underground microseismic events with reduced usage of computational resources and communication bandwidth of the network. After the in-situ distributed computation, the final real-time location result is generated and delivered. We used a real-time simulation platform to test the performance of the system. We also evaluated the stability and accuracy of our proposed GB-TRI localization algorithm using extensive experiments and tests.


Sign in / Sign up

Export Citation Format

Share Document