On-Chip Fabrication of None-Dead-Volume Microtips for ESI-MS Applications

Author(s):  
Che Hsin Lin ◽  
Jen Taie Shiea ◽  
Yen Lieng Lin
Keyword(s):  
Esi Ms ◽  
2007 ◽  
Vol 121-123 ◽  
pp. 611-614
Author(s):  
Che Hsin Lin ◽  
Jen Taie Shiea ◽  
Yen Lieng Lin

This paper proposes a novel method to on-chip fabricate a none-dead-volume microtip for ESI-MS applications. The microfluidic chip and ESI tip are fabricated in low-cost plastic based materials using a simple and rapid fabrication process. A constant-speed-pulling method is developed to fabricate the ESI tip by pulling mixed PMMA glue using a 30-μm stainless wire through the pre-formed microfluidic channel. The equilibrium of surface tension of PMMA glue will result in a sharp tip after curing. A highly uniform micro-tip can be formed directly at the outlet of the microfluidic channel with minimum dead-volume zone. Detection of caffeine, myoglobin, lysozyme and cytochrome C biosamples confirms the microchip device can be used for high resolution ESI-MS applications.


2008 ◽  
Vol 29 (24) ◽  
pp. 4944-4947 ◽  
Author(s):  
Anne Le Nel ◽  
Jana Krenkova ◽  
Karel Kleparnik ◽  
Claire Smadja ◽  
Myriam Taverna ◽  
...  

2021 ◽  
Author(s):  
Stephan Förster ◽  
Jürgen Groll ◽  
Benjamin Reineke ◽  
Stephan Hauschild ◽  
Ilona Paulus ◽  
...  

Bioprinting has evolved into a thriving technology for the fabrication of cell-laden scaffolds. Bioinks are the most critical component for bioprinting. Recently, microgels have been introduced as a very promising bioink enabling cell protection and the control of the cellular microenvironment. However, their microfluidic fabrication inherently seemed to be a limitation. Here we introduce a direct coupling of microfluidics and 3D-printing for the microfluidic production of cell-laden microgels with direct in-flow bioprinting into stable scaffolds. The methodology enables the continuous on-chip encapsulation of cells into monodisperse microdroplets with subsequent in-flow cross-linking to produce cell-laden microgels, which after exiting a microtubing are automatically jammed into thin continuous microgel filaments. The integration into a 3D printhead allows direct in-flow printing of the filaments into free-standing three-dimensional scaffolds. The method is demonstrated for different cross-linking methods and cell lines. With this advancement, microfluidics is no longer a bottleneck for biofabrication. <br>


2009 ◽  
Vol 138 (1) ◽  
pp. 168-173 ◽  
Author(s):  
M.-W. Ahn ◽  
K.-S. Park ◽  
J.-H. Heo ◽  
D.-W. Kim ◽  
K.J. Choi ◽  
...  

Author(s):  
Chien-Fu Chen ◽  
Jikun Liu ◽  
Chien-Cheng Chang ◽  
Don L. DeVoe

A high-pressure microvalve technology based on the integration of discrete elastomeric elements into rigid thermoplastic chips is described. The low-dead-volume valves employ deformable polydimethylsiloxane (PDMS) plugs actuated using a threaded stainless steel needle, allowing exceptionally high pressure resistance to be achieved. The simple fabrication process is made possible through the use of poly(ethylene glycol) (PEG) as a removable blocking material to avoid contamination of PDMS within the flow channel while yielding a smooth contact surface with the PDMS valve surface. Burst pressure tests reveal that the valves can withstand over 24MPa without leakage.


Talanta ◽  
2018 ◽  
Vol 180 ◽  
pp. 376-382 ◽  
Author(s):  
Pan Fang ◽  
Jian-Zhang Pan ◽  
Qun Fang
Keyword(s):  

2008 ◽  
Vol 391 (8) ◽  
pp. 2729-2733 ◽  
Author(s):  
Hiroshi Kuramoto ◽  
Yeon-Su Park ◽  
Noritada Kaji ◽  
Manabu Tokeshi ◽  
Kentaro Kogure ◽  
...  

2021 ◽  
Author(s):  
Stephan Förster ◽  
Jürgen Groll ◽  
Benjamin Reineke ◽  
Stephan Hauschild ◽  
Ilona Paulus ◽  
...  

Bioprinting has evolved into a thriving technology for the fabrication of cell-laden scaffolds. Bioinks are the most critical component for bioprinting. Recently, microgels have been introduced as a very promising bioink enabling cell protection and the control of the cellular microenvironment. However, their microfluidic fabrication inherently seemed to be a limitation. Here we introduce a direct coupling of microfluidics and 3D-printing for the microfluidic production of cell-laden microgels with direct in-flow bioprinting into stable scaffolds. The methodology enables the continuous on-chip encapsulation of cells into monodisperse microdroplets with subsequent in-flow cross-linking to produce cell-laden microgels, which after exiting a microtubing are automatically jammed into thin continuous microgel filaments. The integration into a 3D printhead allows direct in-flow printing of the filaments into free-standing three-dimensional scaffolds. The method is demonstrated for different cross-linking methods and cell lines. With this advancement, microfluidics is no longer a bottleneck for biofabrication. <br>


Sign in / Sign up

Export Citation Format

Share Document