Numerical Study of the Inlet Conditions Influence on Laminar Plane Wall Jets

Author(s):  
Amèni Mokni ◽  
Jamel Kechiche ◽  
Hatem Mhiri ◽  
Georges Le Palec ◽  
Philippe Bournot
2008 ◽  
Vol 273-276 ◽  
pp. 406-412
Author(s):  
Amèni Mokni ◽  
Jamel Kechiche ◽  
Hatem Mhiri ◽  
Georges Le Palec ◽  
Philippe Bournot

In this paper, we present a numerical investigation of a laminar isothermal plane two dimensional wall jets. Special attention has been paid to the effect of the inlet conditions at the nozzle exit on the flow thermal characteristics in forced convection regime. Two velocities profiles at the nozzle exit are used: uniform profile and parabolic profile. The system of equations governing the studied configuration is solved with a finite difference scheme and an implicit scheme, for numerical stability we use a staggered non uniform grid. The obtained results show, first, that the inlet conditions affect the flow in the immediate neighbourhood of the nozzle (core region) in which the flow is governed mainly by the inertias forces. At the established region the results become independent of the flow inlet conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yongli Zhong ◽  
Zhitao Yan ◽  
Yan Li ◽  
Jie Luo ◽  
Hua Zhang

Turbulent radial and plane wall jets have been extensively investigated both experimentally and numerically over the past few decades. Previous studies mostly focused on the heat and mass transfers involved in jet flows. In this study, a comprehensive investigation was conducted on turbulent radial and plane wall jets, considering both jet spread and velocity decay for different parameters. The numerical results were compared with existing experimental measurements. The comparison focused on the velocity profile, jet spread, and velocity decay, and revealed that the Reynolds stress model (RSM) performs well in the simulation of both radial and plane wall jets. The results show that with a typical ratio of cloud base height to diameter for most downburst events, the effects of nozzle height and Reynolds number on the evolution of the radial wall jet are not significant. Both the jet spread and velocity decay exhibit a clear dependence on the Reynolds number below a critical value. Above this critical value, the plane wall jet becomes asymptotically independent of the Reynolds number. The co-flow was found to have a significant influence on the evolution of the plane wall jet. Comparatively, the jet spread and velocity of the radial wall jet were faster than those of the plane jet. For applications in civil engineering, it is valid to approximate the downburst outflow with a two-dimensional (2D) assumption from the perspective of longitudinal evolution of the flows.


2002 ◽  
Vol 33 (2) ◽  
pp. 351-354 ◽  
Author(s):  
M. Tachie ◽  
R. Balachandar ◽  
D. Bergstrom

2021 ◽  
pp. 108174
Author(s):  
J.-H. Thysen ◽  
T. van Hooff ◽  
B. Blocken ◽  
G.J.F. van Heijst
Keyword(s):  

Author(s):  
Shilong Zhao ◽  
Fan Yuxin ◽  
Zhang Xiaolei

Flameholder-stabilized flames are conventional and also commonly used in propulsion and various power generation fields to maintain combustion process. The characteristics of flame expansion were obtained with various blockage ratios, which were observed to be highly sensitive to inlet conditions such as temperatures and velocities. Experiments and simulations combined methodology was performed; also the approach adopted on image processing was calculated automatically through a program written in MATLAB. It was found that the change of flame expansion angle indicated increasing fuel supply could contribute to the growth of flame expansion angle in lean premixed combustion. Besides, the influence of inlet velocity on flame expansion angle varies with different blockage ratios, i.e. under a small blockage ratio (BR = 0.1), flame expansion angle declined with the increase of velocity; however, under a larger blockage ratio (BR = 0.2 or 0.3), flame expansion angle increased firstly and then decreased with the increasing velocity. Likewise, flame expansion angle increased firstly and then decreased with the increasing temperature under BR = 0.2/0.3. In addition, flame expansion angle was almost the same for BR = 0.2 and BR = 0.3 at a higher temperature (900 K), and both of which were bigger than BR = 0.1. Overall, BR = 0.2 is the best for increasing flame expansion angle and reducing total pressure loss. The influence of velocity and temperature on flame expansion angle found from this research are vital for engineering practice and for developing a further image processing method to measure flame boundary.


1997 ◽  
Vol 119 (2) ◽  
pp. 304-313 ◽  
Author(s):  
G. Gerodimos ◽  
R. M. C. So

In most two-dimensional simple turbulent flows, the location of zero shear usually coincides with that of vanishing mean velocity gradient. However, such is not the case for plane turbulent wall jets. This could be due to the fact that the driving potential is the jet exit momentum, which gives rise to an outer region that resembles a free jet and an inner layer that is similar to a boundary layer. The interaction of a free-jet like flow with a boundary-layer type flow distinguishes the plane wall jet from other simple flows. Consequently, in the past, two-equation turbulence models are seldom able to predict the jet spread correctly. The present study investigates the appropriateness of two-equation modeling; particularly the importance of near-wall modeling and the validity of the equilibrium turbulence assumption. An improved near-wall model and three others are analyzed and their predictions are compared with recent measurements of plane wall jets. The jet spread is calculated correctly by the improved model, which is able to replicate the mixing behavior between the outer jet-like and inner wall layer and is asymptotically consistent. Good agreement with other measured quantities is also obtained. However, other near-wall models tested are also capable of reproducing the Reynolds-number effects of plane wall jets, but their predictions of the jet spread are incorrect.


Author(s):  
Iftekhar Z. Naqavi ◽  
James C. Tyacke ◽  
Paul G. Tucker

2007 ◽  
Vol 52 (10) ◽  
pp. 935-957 ◽  
Author(s):  
Jamel Kechiche ◽  
Hatem Mhiri ◽  
Georges Le Palec ◽  
Philippe Bournot

2011 ◽  
Vol 133 (3) ◽  
Author(s):  
S. Salvadori ◽  
F. Montomoli ◽  
F. Martelli ◽  
P. Adami ◽  
K. S. Chana ◽  
...  

Computational fluid dynamics (CFD) prediction of the unsteady aerothermal interaction in the HP turbine stage, with inlet temperature nonuniformity, requires appropriate unsteady modeling and a low diffusive numerical scheme coupled with suitable turbulence models. This maybe referred to as high fidelity CFD. A numerical study has been conducted by the University of Florence in collaboration with ONERA to compare capabilities and limitations of their CFD codes for such flows. The test vehicle used for the investigation is a turbine stage of three-dimensional design from the QinetiQ turbine facility known as MT1. This stage is a high pressure transonic stage that has an unshrouded rotor, configured, and uncooled with 32 stators and 60 rotor blades. Two different CFD solvers are compared that use different unsteady treatments of the interaction. A reduced count ratio technique has been used by the University of Florence with its code HYBFLOW, while a phase lag model has been used by ONERA in their code, ELSA. Four different inlet conditions have been simulated and compared with focus on the experimental values provided by QinetiQ in the frame of TATEF and TATEF2 EU Sixth Framework Projects. The differences in terms of performance parameters and hot fluid redistribution, as well as the time- and pitch-averaged radial distributions on a plane downstream of the rotor blade, have been underlined. Special attention was given to the predictions of rotor blade unsteady pressure and heat transfer rates.


Sign in / Sign up

Export Citation Format

Share Document