scholarly journals Iterative Channel Estimation for the Chinese Digital Television Terrestrial Broadcasting Systems with the Multiple-Antenna Receivers

2012 ◽  
Vol 6-7 ◽  
pp. 439-444
Author(s):  
Zi Wei Zheng

Orthogonal frequency division multiplexing is an effective against multipath fading and high data throughput wireless channel transmission technology. Assistance with the inverse fast Fourier transform and fast Fourier transform operation, orthogonal frequency division multiplexing modulation and demodulation operations of the system convenient and convenient hardware implementation, orthogonal frequency division multiplexing, so in the modern digital television terrestrial broadcasting the system is widely used to support high performance bandwidth-efficient multimedia services. Broadband multi-carrier orthogonal frequency division multiplexing with multi-antenna and multi-antenna receiving system, to increase the diversity gain and improve the capacity of the system in different multipath fading channel. Accurate channel estimation in a simple channel equalization and decoding of broadband multi-carrier orthogonal frequency division multiple-antenna receiver and channel estimation accuracy and multiplexing system is very important, is the key to the performance of the overall broadband multi-carrier orthogonal frequency division multiplexing system in the multi-antenna receiver bit error rate. In this paper, iterative channel estimation to plan for digital terrestrial television broadcasting broadband multi-carrier orthogonal frequency division multiple antenna receiver multiplexing system proposal.

2012 ◽  
Vol 6-7 ◽  
pp. 871-875
Author(s):  
Zi Wei Zheng

Alleviate the multipath delay spread and suitable for broadband transmission efficiency, orthogonal frequency division multiplexing wireless local area network (WLAN) is widely used to assist inverse fast Fourier transform and fast Fourier transform operation domain. Orthogonal frequency division multiplexing is a blow to the broadcast channel multipath fading and high data throughput, transmission, wireless fading channel method, which is widely used to support high performance bandwidth-efficient wireless multimedia services. Several times in the transmitter and receiver antenna technology allows data transfer rate and spectrum efficiency and the use of multiple transmit antennas and multiple receive antennas through spatial processing. High-precision channel estimation scheme is very important wideband multi-carrier orthogonal frequency complex WLAN systems use multiple antenna receiver based division of labor and the overall multi-carrier orthogonal frequency multiplexing division of performance-based WLAN system is to crucial antenna to receive the symbol error rate. In this article, the iterative channel estimation scheme proposed multi-carrier orthogonal frequency division multiplexed using multiple antennas receiver-based WLAN system.


Author(s):  
Heba Abdul-Jaleel Al-Asady ◽  
Hassan Falah Fakhruldeen ◽  
Mustafa Qahtan Alsudani

<p>Orthogonal frequency division multiplexing (OFDM) is a transmission system that uses multiple orthogonal carriers that are sent out at the same time. OFDM is a technique for mobile and wireless communication that has high-efficient frequency utilization, high data-rate transmission, simple and efficient implementation using the fast Fourier transform (FFT) and the inverse fast Fourier transform (IFFT), and reduces inter symbol interference (ISI) by inserting cyclic prefix (CP). One of the most important approaches in an OFDM system is channel estimation. In this paper, the orthogonal frequency division multiplexing system with the Rayleigh channel module is analyzed for different areas. The proposed approach used large numbers of subcarriers to transmit the signals over 64-QAM modulation with pilot add channel estimation. The accuracy of the OFDM system is shown in the measuring of the relationships of peak power to the noise ratio and bit error rate.</p>


2012 ◽  
Vol 6-7 ◽  
pp. 434-438
Author(s):  
Zi Wei Zheng

Faced with the challenges of modern communication, high data throughput requirements, extensive research has been paid to broadband modulation. The multi-carrier modulation is one of the most important wide band modulation techniques. Orthogonal frequency division multiplexing (OFDM) is an effective blow to the broadcast channel multipath fading and high bit rate transmission multi-carrier modulation technology of wireless channels, it is widely used in modern digital television terrestrial broadcasting (DTTB) system to support performance bandwidth-efficient multimedia services with the aid of inverse fast Fourier transform and fast Fourier transform operation. Multiple-antenna transmitter and receiver technology allows several times to achieve data transmission rates and spectrum efficiency and the use of multiple transmit antennas and multiple receive antennas through spatial processing. The Digital Terrestrial Multimedia Broadcasting (DTMB) system with the multiple-antenna receiver is considered in this paper. Digital Terrestrial Multimedia Broadcasting (DTMB) has three kinds of Frame Head mode with PN420/PN595/PN945 as training sequences for the time domain synchronous OFDM (TDS-OFDM). At the receiver side with multiple antennas, Frame Head mode detection should be done. In this paper, the frame synchronization scheme is proposed for the DTMB systems with the multiple-antenna receiver. System performance studies under different channel situations are used to verify the efficiency of the proposed scheme for the DTMB systems with the multiple-antenna receiver.


2019 ◽  
Vol 8 (3) ◽  
pp. 2003-2008

Orthogonal Frequency Division Multiplexing (OFDM) is one of the multicarrier transmission techniques used in wireless communication system. It has many benefits such as robust in channel fading and has high spectral density. The main objective of OFDM implementation in wireless communication system is to achieve less or zero Bit Error Rate (BER). However, OFDM design complexity, requirement and selection of the suitable modulation method are among the current issues. Thus, this paper aims to investigate the performance of OFDM in wireless communication by developing two OFDM based system designs. The transmitter, channel and receiver are designed based on OFDM system principles. Forward Error Correction (FEC) method is applied to reduce the BER. Both OFDM designs produce less BER with zero BER for the second OFDM design. The investigation study shows that the performance of OFDM can be enhanced by applying Fast Fourier Transform (FFT) technique. Zero BER can be achieved if the suitable modulation scheme is applied in the system. The developed designs are not complex, suitable to be applied for IEEE 802.11 standard. The BER performance can be influenced by the types of channels, signal to noise ratio (SNR) and various modulation schemes. Thus, this study can be used as a guidance to implement the OFDM in the current or future wireless communication system.


Sign in / Sign up

Export Citation Format

Share Document