A Numerical Investigation on Reduction of Fluid Force on Three Dimensional Circular Cylinder with Tripping Rods

2011 ◽  
Vol 105-107 ◽  
pp. 139-142
Author(s):  
Chao Ying Zhou ◽  
Wen Ying Ji ◽  
Xing Wei Zhang

The effects of tripping rods on characteristics and fluid forces acting on a single cylinder was three-dimensional numerical studied in a low laminal flow at a Reynolds number of 200 and a subcritical stream at a Reynolds number of 5.5X104. The angular position of the tripping rods was varied from 20 to 60.The results reveal that there exits an optimum position of tripping rod for reducing fluid forces. This optimum angular position was found to be 40° for Re=200 and 30° for Re=5.5X104. At this optimum angle, the steady drag, fluctuating drag and fluctuating lift forces acting on the cylinder are reduced by 21%, 32%, and 28% for Re=200 and 36%, 44%, 76% for Re=5.5X104.

Author(s):  
Andrea Arnone ◽  
Michele Marconcini ◽  
Roberto Pacciani ◽  
Claudia Schipani ◽  
Ennio Spano

A quasi–three–dimensional, blade–to–blade, time–accurate, viscous solver w as used for a three–stage LP turbine study Due to the low Reynolds number, transitional computations were performed. Unsteady analyses were then carried out by varying the circumferential relative position of consecutive vanes and blade rows to study the effects of clocking on the turbine’s performance. A clocking strategy developed in order to limit the number of configurations to be analyzed is discussed. The optimum analytically–determined clocking position is illustrated for two different operating conditions, referred to as cruise and takeoff. The effects of clocking on wake interaction mechanisms and unsteady blade loadings is presented and discussed. For low Reynolds number turbine flows, the importance of taking transition into account in clocking analysis is demonstrated by a comparison with a fully turbulent approach.


2014 ◽  
Vol 493 ◽  
pp. 9-14
Author(s):  
Dedy Zulhidayat Noor ◽  
Eddy Widiyono ◽  
Suhariyanto ◽  
Lisa Rusdiyana ◽  
Joko Sarsetiyanto

Laminar flow past a circular cylinder has been studied numerically at low Reynolds number. The upstream and downstream rods have been used as passive control in order to reduce hydrodynamics forces acting on the cylinder. Both the upstream and downstream rods significantly contribute in reduction of drag and fluctuating lift compared to single cylinder without the rods. More detail, the upstream installation rod is more dominant in drag reduction than the downstream one. On the contrary, the downstream rod has suppressed the magnitude of the fluctuating lift almost twice that of the upstream configuration. Placing the two rods together as the upstream and downstream passive control in tandem arrangement has given more hydrodynamics forces reduction than the single rod configurations.Keywords:circular cylinder, passive control, tandem, drag, lift.


2021 ◽  
Vol 158 (A1) ◽  
Author(s):  
S Kim ◽  
P A Wilson ◽  
Z Chen

The effect of the spanwise discretisation on numerical calculations of the turbulent flow around a circular cylinder is systematically assessed at a subcritical Reynolds number of 10000 in the frame of three-dimensional large-eddy simulation. The eddy-viscosity k-equation subgrid scale model is implemented to evaluate unsteady turbulent flow field. Large-eddy simulation is known to be a reliable method to resolve such a challenging flow field, however, the high computational efforts restrict to low Reynolds number flow or two-dimensional calculations. Therefore, minimum spatial density in the spanwise direction or cylinder axis direction needs to be carefully evaluated in order to reduce high computational resources. In the present study, the influence of the spanwise resolutions to satisfactorily represent three- dimensional complex flow features is discussed in detail and minimum spatial density for high Reynolds flow is suggested.


Author(s):  
A. Inasawa ◽  
K. Toda ◽  
M. Asai

Disturbance growth in the wake of a circular cylinder moving at a constant acceleration is examined experimentally. The cylinder is installed on a carriage moving in the still air. The results show that the critical Reynolds number for the onset of the global instability leading to a self-sustained wake oscillation increases with the magnitude of acceleration, while the Strouhal number of the growing disturbance at the critical Reynolds number is not strongly dependent on the magnitude of acceleration. It is also found that with increasing the acceleration, the Ka´rma´n vortex street remains two-dimensional even at the Reynolds numbers around 200 where the three-dimensional instability occurs to lead to the vortex dislocation in the case of cylinder moving at constant velocity or in the case of cylinder wake in the steady oncoming flow.


2019 ◽  
Vol 878 ◽  
pp. 875-906
Author(s):  
Adnan Munir ◽  
Ming Zhao ◽  
Helen Wu ◽  
Lin Lu

Flow around a high-speed rotating circular cylinder for $Re\leqslant 500$ is investigated numerically. The Reynolds number is defined as $UD/\unicode[STIX]{x1D708}$ with $U$, $D$ and $\unicode[STIX]{x1D708}$ being the free-stream flow velocity, the diameter of the cylinder and the kinematic viscosity of the fluid, respectively. The aim of this study is to investigate the effect of a high rotation rate on the wake flow for a range of Reynolds numbers. Simulations are performed for Reynolds numbers of 100, 150, 200, 250 and 500 and a wide range of rotation rates from 1.6 to 6 with an increment of 0.2. Rotation rate is the ratio of the rotational speed of the cylinder surface to the incoming fluid velocity. A systematic study is performed to investigate the effect of rotation rate on the flow transition to different flow regimes. It is found that there is a transition from a two-dimensional vortex shedding mode to no vortex shedding mode when the rotation rate is increased beyond a critical value for Reynolds numbers between 100 and 200. Further increase in rotation rate results in a transition to three-dimensional flow which is characterized by the presence of finger-shaped (FV) vortices that elongate in the wake of the cylinder and very weak ring-shaped vortices (RV) that wrap the surface of the cylinder. The no vortex shedding mode is not observed at Reynolds numbers greater than or equal to 250 since the flow remains three-dimensional. As the rotation rate is increased further, the occurrence frequency and size of the ring-shaped vortices increases and the flow is dominated by RVs. The RVs become bigger in size and the flow becomes chaotic with increasing rotation rate. A detailed analysis of the flow structures shows that the vortices always exist in pairs and the strength of separated shear layers increases with the increase of rotation rate. A map of flow regimes on a plane of Reynolds number and rotation rate is presented.


Sign in / Sign up

Export Citation Format

Share Document