Trajectory Optimization for Hypersonic Vehicle Satisfying Maneuvering Penetration

2011 ◽  
Vol 110-116 ◽  
pp. 5223-5231 ◽  
Author(s):  
Ke Nan Zhang ◽  
Wan Chun Chen

A trajectory optimization method for hypersonic vehicle in glide phase satisfying maneuvering penetration is proposed. Divide the dangerous zones that the hypersonic vehicle may encounter during glide phase into avoidable no-fly zones and avoidless no-fly zones. Take the avoidable no-fly zones as path constraints to join the trajectory optimization. To penetrate the avoidless no-fly zones, trajectory is programmed by some maneuvering policy. Direct shooting method is used to discretize the control variable to piecewise constant functions. So the optimal control problem is transferred to a nonlinear programming (NLP) problem, and solved by the serial quadratic program (SQP) method.

Author(s):  
Yu Wu ◽  
Ning Hu ◽  
Xiangju Qu

Enhancing operation efficiency of flight deck has become a hotspot because it has an important impact on the fighting capacity of the carrier–aircraft system. To improve the operation efficiency, aircraft need taxi to the destination on deck with the optimal trajectory. In this paper, a general method is proposed to solve the trajectory optimization problem for aircraft taxiing on flight deck considering that the existing methods can only deal with the problem in some specific cases. Firstly, the ground motion model of aircraft, the collision detection strategy and the constraints are included in the mathematical model. Then the principles of the chicken swarm optimization algorithm and the generality of the proposed method are explained. In the trajectory optimization algorithm, several strategies, i.e. generation of collocation points, transformation of control variable, and setting of segmented fitness function, are developed to meet the terminal constraints easier and make the search efficient. Three groups of experiments with different environments are conducted. Aircraft with different initial states can reach the targets with the minimum taxiing time, and the taxiing trajectories meet all the constraints. The reason why the general trajectory optimization method is validated in all kinds of situations is also explained.


2014 ◽  
Vol 568-570 ◽  
pp. 1063-1067
Author(s):  
Jian Jun Wang ◽  
Jian Qiao Yu

The optimal design for the gliding trajectory is studied. The particle trajectory model in the longitudinal plane is established. Aiming at solving the problems in numerical solution ,the direct shooting method based on the interpolating function of Akima is put forward .In direct collocation method, the parameters of the trajectory with approximate maximum lift-drag ratio is adopted as the starting value of the optimal variables. The trajectory with approximate maximum lift-drag ratio could be obtained by the search method. The transfer approach of turning the problem of trajectory optimization to the problem of parameter optimization by the direct shooting method is illustrated. To one kind of guided vehicles in simulation, the simulation results prove the practicability of the direct shooting method.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Xing Wei ◽  
Lei Liu ◽  
Yongji Wang ◽  
Ye Yang

Generation of optimal reentry trajectory for a hypersonic vehicle (HV) satisfying both boundary conditions and path constraints is a challenging task. As a relatively new swarm intelligent algorithm, an adaptive fireworks algorithm (AFWA) has exhibited promising performance on some optimization problems. However, with respect to the optimal reentry trajectory generation under constraints, the AFWA may fall into local optimum, since the individuals including fireworks and sparks are not well informed by the whole swarm. In this paper, we propose an improved AFWA to generate the optimal reentry trajectory under constraints. First, via the Chebyshev polynomial interpolation, the trajectory optimization problem with infinite dimensions is transformed to a nonlinear programming problem (NLP) with finite dimension, and the scope of angle of attack (AOA) is obtained by path constraints to reduce the difficulty of the optimization. To solve the problem, an improved AFWA with a new mutation strategy is developed, where the fireworks can learn from more individuals by the new mutation operator. This strategy significantly enhances the interactions between the fireworks and sparks and thus increases the diversity of population and improves the global search capability. Besides, a constraint-handling technique based on an adaptive penalty function and distance measure is developed to deal with multiple constraints. The numerical simulations of two reentry scenarios for HV demonstrate the validity and effectiveness of the proposed improved AFWA optimization method, when compared with other optimization methods.


2014 ◽  
Vol 615 ◽  
pp. 270-275
Author(s):  
Wen Jing Zhang ◽  
Fen Fen Xiong

Glide trajectory optimization of vehicle can greatly improve the performance of missile. As is well-known, methods of trajectory optimization can be divided into direct and indirect methods. Generally, the direct method is convenient and can obtain the optimal solution with higher probability. Based on the direct method, a missile trajectory is optimized by discretizing the control quantity (angle of attack) and transforming the original optimal control problem to a nonlinear programing problem (NLP) in the present paper. The particle swarm optimization algorithm that is easy to implement and has higher convergence rate is utilized to solve the transformed NLP to generate the optimal angle of attack rule. Simulation results show that with the optimal rule, gliding distance of missile is clearly improved compared to the initial one.


2014 ◽  
Vol 635-637 ◽  
pp. 1431-1437
Author(s):  
Wu Jun Huo ◽  
Xu Liu ◽  
Li Wang ◽  
Chao Song

Abstract:The application of Gauss pseudospectral method (GPM) to hypersonic aircraft reentry trajectory optimization problem with maximum cross range was introduced. The Gauss pseudospectral method was used to solve the reentry trajectory of the hypersonic vehicle with the maximum cross range. Firstly, the model of hypersonic aircraft reentry trajectory optimization control problem was established. Taking no account of course constraint, the maximum cross range was chosen as optimal performance index, and angle of attack and bank was chosen as control variable. Terminal state was constrained by position and velocity. Then GPM was applied to change trajectory optimization problem into nonlinear programming problem (NLP), and the state variables and control variables were selected as optimal parameters at all Gauss nodes. At last, optimal reentry trajectory was solved by solving the NLP with the help of SNOPT. The simulation results indicate that GPM does not need to estimate the initial cost variable, and it is not sensitive to the initial states and effective to solve trajectory optimization problem.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Binbin Yan ◽  
Ruifan Liu ◽  
Pei Dai ◽  
Muzeng Xing ◽  
Shuangxi Liu

The evasion maneuver problem of hypersonic vehicles differs from those of ballistic missiles and other traditional weapons, showing distinctive properties including expansive maneuver range and weak maneuverability. How to avoid the disadvantage of low available overload and ensure follow-up tasks are the main concerns of the hypersonic penetration. This paper presents a penetration trajectory optimization algorithm for an air-breathing hypersonic vehicle, where the prerequisite penetration condition is analyzed and control costs are chosen as an objective function to minimize the fuel consumption and maneuver range. This paper focuses on how to formulate the complex, highly constrained nonconvex penetration problem to be a sequence of easily solved second-order cone programming through a combination of successive linearization and relaxation techniques. Innovation lies in the raising of the penetration angle and the relaxation technique of nonlinear and nonconvex elements. Various numerical simulations are conducted to verify the validity of penetration condition and to demonstrate that the proposed method is effective and has a good computational performance irrespective of initial guesses.


2013 ◽  
Vol 756-759 ◽  
pp. 3466-3470
Author(s):  
Xu Min Song ◽  
Qi Lin

The trajcetory plan problem of spece reandezvous mission was studied in this paper using nolinear optimization method. The optimization model was built based on the Hills equations. And by analysis property of the design variables, a transform was put forward , which eliminated the equation and nonlinear constraints as well as decreaseing the problem dimensions. The optimization problem was solved using Adaptive Simulated Annealing (ASA) method, and the rendezvous trajectory was designed.The method was validated by simulation results.


2015 ◽  
Vol 713-715 ◽  
pp. 800-804 ◽  
Author(s):  
Gang Chen ◽  
Cong Wei ◽  
Qing Xuan Jia ◽  
Han Xu Sun ◽  
Bo Yang Yu

In this paper, a kind of multi-objective trajectory optimization method based on non-dominated sorting genetic algorithm II (NSGA-II) is proposed for free-floating space manipulator. The aim is to optimize the motion path of the space manipulator with joint angle constraints and joint velocity constraints. Firstly, the kinematics and dynamics model are built. Secondly, the 3-5-3 piecewise polynomial is selected as interpolation method for trajectory planning of joint space. Thirdly, three objective functions are established to simultaneously minimize execution time, energy consumption and jerk of the joints. At last, the objective functions are combined with the NSGA-II algorithm to get the Pareto optimal solution set. The effectiveness of the mentioned method is verified by simulations.


2021 ◽  
Vol 2113 (1) ◽  
pp. 012022
Author(s):  
Chao Sun

Abstract In this paper, taking the feeding process as a form of impulsive and considering the time-delay in fermentation process. A robust model with the time-delay system as the control variable and the time-delay system as the constraint is established. In order to solve this optimal control problem, we have propose an particle swarm optimization method to solve problem. Numerical results show that 1,3-PD yield at the terminal time increases compared with the experimental result.


Sign in / Sign up

Export Citation Format

Share Document