Oxidation Chlorination of Thiophene in Coking Benzene

2011 ◽  
Vol 130-134 ◽  
pp. 1066-1069 ◽  
Author(s):  
Min Yan Ling ◽  
Hou He Chen

Thiophene is a typical thiophenenic sulfur compound that exists in coking benzene. In this paper, investigate oxidation chlorination of thiophene in coking benzene. Potassium permanganate was combined with hydrochloric acid for a new KMnO4/HCl system of oxidation desulfurization. The preliminary results show that the thiophene in the benzene cannot be deep oxidized desulfurization alone potassium permanganate solution even at acetum. The thiophene in the coking benzene could be mostly converted by using KMnO4/HCl system. In suitable reaction conditions thiophene’s removal rate can reach more than 93%.

2014 ◽  
Vol 955-959 ◽  
pp. 2453-2457
Author(s):  
Hui Yang ◽  
Meng Zhao ◽  
Ji Gang Yang ◽  
Xin Chai ◽  
Yue Xu

This document studies test methods on modification of activated carbon by potassium permanganate to adsorb Cu2+. Ensure all factors’ effects on Cu2+ removal. Use potassium permanganate solution to modify activated carbon, investigate main factors’ effects on Cu2+ removal and analyze mechanism by changing potassium permanganate solution concentration, adsorption time, activated carbon’s additive amount and temperature. The results show that modification of activated carbon by 0.03mol/L potassium permanganate solution (0.03K-GAC) can adsorb Cu2+ best. 0.03K-GAC’s removal rate on Cu2+ is 98% when the initial concentration of Cu2+ is 50mg/L, the additive amount of 0.03K-GAC is 2.0g, the pH value is 5.5, the temperature is 25°C and the adsorption time is 4h. Modification of activated carbon by potassium permanganate has good adsorbability on Cu2+. Potassium permanganate solution concentration, adsorption time and additive amount can influence the adsorption of Cu2+ by activated carbon. However, temperature’s influence on the effect of adsorption is non-significant.


Minerals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 511 ◽  
Author(s):  
Li Wang ◽  
Ye Zhang ◽  
Ning Sun ◽  
Wei Sun ◽  
Yuehua Hu ◽  
...  

F-containing wastewater does great harm to human health and the ecological environment and thus needs to be treated efficiently. In this paper, the new calcium-containing precipitant calcite and aided precipitant fluorite were adopted to purify F-containing wastewater. Relevant reaction conditions, such as reaction time, oscillation rate, dosage of hydrochloric acid, calcite dosage and the assisting sedimentation performance of fluorite, and action mechanism are analyzed. The experiment showed that the removal rate of fluoride in simulated wastewater reached 96.20%, when the reaction time, the dosage of calcite, the dosage of 5% dilute hydrochloric acid, and the oscillation rate was 30 min, 2 g/L, 21.76 g/L, and 160 r/min, respectively. Moreover, the removal rate of fluoride in the actual F-containing smelting wastewater reaches approximately 95% under the optimum condition of calcite dosage of 12 g/L, reaction time of 30 min, and oscillation rate of 160 r/min. The addition of fluorite significantly improves the sedimentation performance of the reactive precipitates. The experimental results showed that calcite and fluorite can effectively reduce the concentration of fluoride ions in F-containing wastewater and solve the problem of slow sedimentation of reactive precipitates.


Author(s):  
M. S. Bischel ◽  
J. M. Schultz

Despite its rapidly growing use in commercial applications, the morphology of LLDPE and its blends has not been thoroughly studied by microscopy techniques. As part of a study to examine the morphology of a LLDPE narrow fraction and its blends with HDPE via SEM, TEM and AFM, an appropriate etchant is required. However, no satisfactory recipes could be found in the literature. Mirabella used n-heptane, a solvent for LLDPE, as an etchant to reveal certain morphological features in the SEM, including faint banding in spherulites. A 1992 paper by Bassett included a TEM micrograph of an axialite of LLDPE, etched in a potassium permanganate solution, but no details were given.Attempts to use n-heptane, at 60°C, as an etchant were unsuccessful: depending upon thickness, samples swelled and increased in diameter by 5-10% or more within 15 minutes. Attempts to use the standard 3.5% potassium permanganate solution for HDPE were also unsuccessful: the LLDPE was severely overetched. Weaker solutions were also too severe.


2012 ◽  
Vol 627 ◽  
pp. 378-381
Author(s):  
Bi Rong Wang

Fenton pretreatment has been used for treating dye wastewater. The effects of the dos of H2O2 and FeSO4, reaction time and pH on the removal COD were investigated. It was found that, when the reaction conditions are as follows: COD 2850 mg/L dyeing wastewater, the dosage of H2O2 is 140mmol/L, FeSO4 17.02 mmol/L, pH 7.6, and reaction time 1.0 h, the CODcr of dye wastewater removal rate of up to 70%. Fenton pretreatment process of dye wastewater has a broad prospect.


2006 ◽  
Vol 4 (4) ◽  
pp. 708-722 ◽  
Author(s):  
Akram El-Didamony ◽  
Alaa Amin ◽  
Ahmed Ghoneim ◽  
Ayman Telebany

AbstractFour simple, accurate, sensitive and economical procedures (A–D) for the estimation of gentamicin sulphate and vancomycin hydrochloride, both in pure form and in pharmaceutical formulations have been developed. The methods are based on the oxidation of the studied drugs by a known excess of potassium permanganate in sulphuric acid medium and subsequent determination of unreacted oxidant by reacting it with amaranth dye (method A), acid orange II (method B), indigocarmine (method C) and methylene blue (method D), in the same acid medium at a suitable λmax=521, 485, 610 and 664 nm, respectively. The reacted oxidant corresponds to the drug content. Regression analysis of Beer-Lambert plots showed good correlations in the concentration ranges 4–8, 3–8, 4–9 and 5–9 µg ml−1 with gentamicin and 4–8, 1.5–4, 1.5–4 and 3.5–5.5 µg ml−1 with vancomycin for methods A, B, C, and D, respectively. The molar absorptivity, sandell sensitivity, detection and quantification limits were calculated. The stoichiometric ratios for the cited drugs were studied. The optimum reaction conditions and other analytical parameters were evaluated. The influence of the substance commonly employed as excipients with these drugs were studied. The proposed methods were applied to the determination of these drugs in pharmaceutical formulations. The results have demonstrated that the methods are equally accurate and reproducible as the official methods.


2013 ◽  
Vol 295-298 ◽  
pp. 1209-1214 ◽  
Author(s):  
Si Hang Shan ◽  
Peng Fei Fan ◽  
Yi Xing ◽  
Geng Qiao

Two kinds of vitamin B12 waste water from a pharmaceutical factory were treated separately by methods of combining micro-electrolysis with physiochemical and O3 oxidation. Effects of the reaction conditions on the removal rate of color were investigated. Results showed that the color removal rate of vitamin B12 waste water, which was treated by combined micro-electrolysis and physiochemical treatment reached 71.25%, while the color removal rate of the other waste water which treated by O3 oxidation reached 68.80%. The decolorizing treatment of those different natures of vitamin B12 waste water effectively provides a useful reference for this kind of waste water.


1982 ◽  
Vol 37 (10) ◽  
pp. 1274-1278 ◽  
Author(s):  
Werner Roll ◽  
Ernst Otto Fischer ◽  
Dietmar Neugebauer ◽  
Ulrich Schubert

The reaction of trans-bromotetracarbonyl(phenylcarbyne)chromium (1) with lithium phenylselenolate and subsequent protonation with aqueous hydrochloric acid leads to (CO)5Cr[Se2(C6H5)2] (3) and (CO)4Cr(μ-SeC6H5)2Cr(CO)4 (4). From 1 and lithium 4-methylphenylthiolate (CO)5CrC(C6H5)SC6H4CH3 (5) and (CO)5CrS(C2H5)(4-CH3C6H4) (6) are obtained, if triethyloxonium tetrafluoroborate is used instead of hydrochloric acid. The analoguous reaction of 1 with lithium phenylselenolate yields the seleno ether complex (7). Reaction conditions, properties, spectroscopic data and the results of an X-ray structure determination of the binuclear complex (4) are reported.


2016 ◽  
Vol 73 (12) ◽  
pp. 2888-2895 ◽  
Author(s):  
Guoping Li ◽  
Juanqin Xue ◽  
Nina Liu ◽  
Lihua Yu

Abstract The transport of cyanide from wastewater through a bulk liquid membrane (BLM) containing tricaprylamine (TOA) as a carrier was studied. The effect of cyanide concentration in the feed solution, TOA concentration in the organic phase, the stirring speed, NaOH concentration in the stripping solution and temperature on cyanide transport was determined through BLM. Mass transfer of cyanide through BLM was analyzed by following the kinetic laws of two consecutive irreversible first-order reactions, and the kinetic parameters (k1, k2, Rmmax, tmax, Jamax, Jdmax) were also calculated. Apparently, increase in membrane entrance (k1) and exit rate (k2) constants was accompanied by a rise in temperature. The values of activation energies were obtained as 35.6 kJ/mol and 18.2 kJ/mol for removal and recovery, respectively. These values showed that both removal and recovery steps in cyanide transport is controlled by the rate of the chemical complexation reaction. The optimal reaction conditions were determined by BLM using trioctylamine as the carrier: feed phase: pH 4, carrier TOA possession ratio in organic phase: 2% (V/V), stripping phase concentration of NaOH: 1% (W/V), reaction time: 60 min, stirring speed: 250 r/min. Under the above conditions, the removal rate was up to 92.96%. The experiments demonstrated that TOA was a good carrier for cyanide transport through BLM in this study.


Sign in / Sign up

Export Citation Format

Share Document