Research on the Characteristics of PMSM Vector Control System Based on Speed Sliding Mode Controller

2011 ◽  
Vol 130-134 ◽  
pp. 1142-1147 ◽  
Author(s):  
Hui Fan ◽  
Yi Chao Wang

In the actual permanent magnet synchronous motor servo system, the load changes are a major factor that affects system performance. In this paper, a PMSM vector control system model based on speed sliding mode controller is established in Matlab/Simulink environment. By adjusting the parameters of controller, simulation and analysis are done on the load changes that may appear. The results demonstrate that the system is stable, with good load characteristics and Robustness.

2014 ◽  
Vol 548-549 ◽  
pp. 819-823
Author(s):  
Xi Juan Wang ◽  
Tao Zhou ◽  
Jing Xiao Feng ◽  
Yu Peng Pei

In the AC control system, vector control theory is very popular as it makes the AC motor achieve the performance as perfect as DC motor [1]. In the paper, the vector control theory is briefly introduced, and then a vector control system model is builded in the matlab/simulink, and the SVPWM technique is adopted. The results show that the improved vector control sytem of PMSM has a excellent performance.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3116 ◽  
Author(s):  
Jianfei Zhao ◽  
Minqi Hua ◽  
Tingzhang Liu

In this paper, a sliding mode vector control system based on collaborative optimization of an axial flux permanent magnet synchronous motor (AFPMSM) for an electric vehicle is proposed. In order to increase the high efficiency range of electric vehicles and improve the cruising range, a collaborative optimization control strategy is firstly proposed. Due to the use of a dual stator-single rotor AFPMSM, the multi-motor efficiency optimization map and torque cooperative control are used to realize the working mode conversion of single stator and double stator, and the torque ripple caused by the working mode conversion is improved by fuzzy control. In order to improve the torque tracking capability, speed limiting characteristics, and operating characteristics, a speed limit and current vector control strategy based on a sliding mode controller is proposed and studied. The dynamic performance of electric vehicles is improved by a sliding mode vector control. Finally, a drive control system was developed for the proposed control strategy, and the complete vehicle test was carried out. The collaborative optimization control experiment and torque tracking and speed limiting experiments verify the correctness and effectiveness of the proposed control strategy. The acceleration performance and endurance experiments show that the proposed control strategy can effectively improve the cruising range and the acceleration performance of electric vehicles.


2011 ◽  
Vol 317-319 ◽  
pp. 672-677
Author(s):  
Bin Wei ◽  
Ji Bin Hu ◽  
Zeng Xiong Peng

A novel vector control system of the split double-rotor motor based on indirect vector control principle has been proposed. The mathematic models of the primary machine and the secondary machine are set up respectively. Through the coupling of the two models, the system model of the split double-rotor motor is build. Matlab software is used for the simulation and analysis of this indirect vector control system. According to the simulation results, the validity of system model is proved with nicer static and dynamic capability, and without steady-state error in stable state. These are important to analyze and design the double-rotor motor. Furthermore, the results provide the basis for simulation and apply of double-rotor motor in HEV.


2019 ◽  
Vol 91 ◽  
pp. 01007 ◽  
Author(s):  
Ruslan Zhiligotov ◽  
Vyacheslav Shestakov ◽  
Vladymyr Sosnin ◽  
Evgeniy Popkov

The most common control system for a synchronous motor with permanent magnets is a vector control system. The construction of such a system has a number of difficulties, one of them is the need to have information about the current position of the rotor. Data on the position of the rotor can be obtained using sensors, or include a supervisor in the control system. The article describes an adaptive observer of the position and speed of the rotor of a synchronous motor with permanent magnets. This observer is used in the system of sensorless vector control of the electric drive. The presented version of the observer of the engine state is realized by creating a model in the Matlab Simulink software package. The results of experimental verification of the presented observer at the stand with the use of an engine with a power of 200 W are shown. The aim of the work is to develop an observer that is stable to changing drive parameters. This is achieved by using a relay unit in the view of the observer, which implements the slip mode.


2013 ◽  
Vol 307 ◽  
pp. 27-30 ◽  
Author(s):  
Yu Feng Zhang ◽  
Sheng Jin Li ◽  
Yong Zhou ◽  
Qi Xun Zhou

In order to improve the performance of sensorless PMSM control system, an improved sliding mode observer (SMO) is proposed in this paper. To decrease the vibration of SMO, a variable switching gain which changes according to the winding currentn is adopted. To improve the estimated value of rotor position, a extra low pass filter (LPF) is employed and the linear interpolation method is used to calculate compensation value of the phase delay caused by LPF. To verify the performance of proposed SMO, a sensorless field oriented vector control system of PMSM is designed. At last, the performance of the improved SMO and the sensorless PMSM vector control system are verified by experimental results.


2011 ◽  
Vol 383-390 ◽  
pp. 196-201 ◽  
Author(s):  
Guo Hua Li ◽  
Ji Qiang Wang

Vector control is one of the most popular control techniques of induction motors. Owing to its simplicity, the indirect vector control gains increasing popularity. This paper proposes a speed sensor-less indirect vector control system of induction motors based on a novel sliding mode control (SMC) speed observer. The observer uses the stator current difference of the estimated value and the actual value to calculate the rotor speed. The simulation results show that the method has a fast response and high accuracy, and it robust to parameter variations.


Sign in / Sign up

Export Citation Format

Share Document