An Effective Method for Determining Finite Element Model Parameters of Rotor Elastic Support System

2011 ◽  
Vol 141 ◽  
pp. 191-197
Author(s):  
Yong Xing Wang ◽  
Jiang Yan ◽  
Sheng Ze Wang

A finite element model of the elastic support rotor system based on the corresponding experimental model was established. According to the principle of two types of model with an equal first order critical speed, the equivalent stiffness and damping of a rolling ball bearing support system with rubber rings determined by experiment were transferred into the finite element model. Then, the dynamic behavior of rotor systems with symmetric and asymmetric structure, different support system stiffness and support span were calculated and analyzed respectively. At last, the influence of the rotor structural parameters on the equivalent stiffness of elastic bearing support system obtained by experiment was pointed out.

2011 ◽  
Vol 255-260 ◽  
pp. 1939-1943 ◽  
Author(s):  
Miao Yi Deng ◽  
Guang Hui Li

Employing response surface method, the complicated implicit relationship between bridge structural static-load responses and structural parameters is approximately represented by the simple explicit function. Based on this response surface model (function), the structural finite element model parameters can be easily updated by selected optimization procedure. By a numerical example of a two-span continuous beam, the essential theory and implementation of structural static response surface based finite element model updating are presented in the paper.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
B. Asgari ◽  
S. A. Osman ◽  
A. Adnan

The model tuning through sensitivity analysis is a prominent procedure to assess the structural behavior and dynamic characteristics of cable-stayed bridges. Most of the previous sensitivity-based model tuning methods are automatic iterative processes; however, the results of recent studies show that the most reasonable results are achievable by applying the manual methods to update the analytical model of cable-stayed bridges. This paper presents a model updating algorithm for highly redundant cable-stayed bridges that can be used as an iterative manual procedure. The updating parameters are selected through the sensitivity analysis which helps to better understand the structural behavior of the bridge. The finite element model of Tatara Bridge is considered for the numerical studies. The results of the simulations indicate the efficiency and applicability of the presented manual tuning method for updating the finite element model of cable-stayed bridges. The new aspects regarding effective material and structural parameters and model tuning procedure presented in this paper will be useful for analyzing and model updating of cable-stayed bridges.


2021 ◽  
Vol 18 ◽  
pp. 175682932110433
Author(s):  
Shanyong Zhao ◽  
Zhen Liu ◽  
Ke Lu ◽  
Dacheng Su ◽  
Shangjing Wu

In this paper, the bionic membrane structure is introduced to improve the aerodynamic performance of nano rotor at the low Reynolds number. The aerodynamic characteristics of nano rotor made of hyperelastic material as membrane blades are studied. Firstly, based on the hyperelastic constitutive model, a finite element model of the rotor is established and compared with the results of the modal test to verify the accuracy of the model. Then the computational fluid dynamics model of membrane nano rotor is established which combined with the finite element model. The aerodynamic characteristics of the membrane rotor under hovering conditions are studied using fluid–structure interaction method. It is found that the calculation results matched well with the experiment results. The design of the structural parameters such as the membrane proportion, shape, and position of the membrane rotor is optimized. The influence of each parameter on the aerodynamic performance of the rotor is obtained. Under certain structural conditions, the performance can be effectively improved, which provides a new idea for the design of the nano rotor.


2013 ◽  
Vol 554-557 ◽  
pp. 1045-1054 ◽  
Author(s):  
Welf Guntram Drossel ◽  
Reinhard Mauermann ◽  
Raik Grützner ◽  
Danilo Mattheß

In this study a numerical simulation model was designed for representing the joining process of carbon fiber-reinforced plastics (CFRP) and aluminum alloy with semi-tubular self-piercing rivet. The first step towards this goal is to analyze the piercing process of CFRP numerical and experimental. Thereby the essential process parameters, tool geometries and material characteristics are determined and in finite element model represented. Subsequently the finite element model will be verified and calibrated by experimental studies. The next step is the integration of the calibrated model parameters from the piercing process in the extensive simulation model of self-piercing rivet process. The comparison between the measured and computed values, e.g. process parameters and the geometrical connection characteristics, shows the reached quality of the process model. The presented method provides an experimental reliable characterization of the damage of the composite material and an evaluation of the connection performances, regarding the anisotropic property of CFRP.


Author(s):  
Stefan Lammens ◽  
Marc Brughmans ◽  
Jan Leuridan ◽  
Ward Heylen ◽  
Paul Sas

Abstract This paper presents two applications of the RADSER model updating technique (Lammens et al. (1995) and Larsson (1992)). The RADSER technique updates finite element model parameters by solution of a linearised set of equations that optimise the Reduced Analytical Dynamic Stiffness matrix based on Experimental Receptances. The first application deals with the identification of the dynamic characteristics of rubber mounts. The second application validates a coarse finite element model of a subframe of a Volvo 480.


1990 ◽  
Vol 112 (3) ◽  
pp. 287-291 ◽  
Author(s):  
F. A. Kolkailah ◽  
A. J. McPhate

In this paper, results from an elastic-plastic finite-element model incorporating the Bodner-Partom model of nonlinear time-dependent material behavior are presented. The parameters in the constitutive model are computed from a leastsquare fit to experimental data obtained from uniaxial stress-strain and creep tests at 650°C. The finite element model of a double-notched specimen is employed to determine the value of the elastic-plastic strain and is compared to experimental data. The constitutive model parameters evaluated in this paper are found to be in good agreement with those obtained by the other investigators. However, the parameters determined by the numerical technique tend to give response that agree with the data better than do graphically determined parameters previously used. The calculated elastic-plastic strain from the model agreed well with the experimental strain.


2010 ◽  
Vol 24 (01n02) ◽  
pp. 10-17 ◽  
Author(s):  
XU SONG ◽  
SHU YAN ZHANG ◽  
ALEXANDER M. KORSUNSKY

The results of a strain gradient finite element model of polycrystalline plastic deformation in an HCP alloy were analysed in terms of orientation-related meso-scale grain groups. The predictions for meso-scale elastic strains were post-processed to construct energy dispersive diffraction peak patterns. Synchrotron X-ray polycrystalline diffraction was thereafter employed to record experimentally multiple peaks from deformed samples of Ti -6 Al -4 V alloy. Model parameters were adjusted to provide the best simultaneous match to multiple peaks in terms of intensity, position and shape. The framework provides a rigorous means of validating polycrystal plasticity finite element model. The study represents an example of the parallel development of modelling and experimental tools that is useful for the study of statistically stored dislocations (SSDs) and geometrically necessary dislocations (GNDs) effects on the deformation behaviour of (poly)crystals.


2011 ◽  
Vol 86 ◽  
pp. 323-326
Author(s):  
Guang Hao Dai ◽  
Chang Wei Gao ◽  
Yong Heng Liu

Shock load spectrum of elastic support gearbox is confirmed by Federation Wehrmacht vessel construction rules BV0430/85 standard, and convert into equivalent double-triangular wave acceleration shock load. We take one elastic support gearbox which used in a vessel as computational study subject. With the help of ABAQUS software, we establish finite element model of elastic support gearbox and put double-triangular shock load into finite element model. Taking finite element analysis method do time domain response characteristics numerical simulation research of elastic support gearbox with limited bit and unlimited bit design, respectively, under shock load effect.


Sign in / Sign up

Export Citation Format

Share Document