Research on the Information Extraction Technology of STEP

2011 ◽  
Vol 141 ◽  
pp. 455-459
Author(s):  
Xue Bin Liu ◽  
Wei Zhao ◽  
Chong Ning Li ◽  
De Ji Hu

In order to generate STEP-NC data model in keeping with the ISO14649 protocol, extend the STEP model to the field of the CNC, the paper analyzes STEP standard and its file structure, develops the display software which can be read and display the STEP format file based on open source Open CASCADE geometric kernel by using the Visual Studio 2008 software development environment, designs one instance by using Pro/E software, and stored as a STEP format file in Pro/E environment, and then, using the software developed to read and display the STEP file. The results of this study improve the product data exchange and integration capabilities, lay a good foundation for generating the STEP-NC format file in the future, extracting the file STEP-NC machining information, and achieving CAD / CAM / CAPP integration system.

Author(s):  
Martin Hardwick ◽  
Fiona Zhao ◽  
Fred Proctor ◽  
Sid Venkatesh ◽  
David Odendahl ◽  
...  

STEP-NC is the result of a ten-year international effort to replace the RS274D (ISO 6983) G and M code standard with a modern associative language. The new standard connects CAD design data to CAM process data so that smart applications can understand both the design requirements for a part and the manufacturing solutions developed to make that part. STEP-NC builds on a previous ten-year effort to develop the STEP standard for CAD to CAD and CAD to CAM data exchange, and uses the modern geometric constructs in that standard to specify device independent tool paths, and CAM independent volume removal features. This paper reviews a series of demonstrations carried out to test and validate the STEP-NC standard. These demonstrations were an international collaboration between industry, academia and research agencies. Each demonstration focused on testing and extending the STEP-NC data model for a different application.


Author(s):  
Xun Xu

The integration model (Model B) as discussed in the previous chapter makes use of exchangeable neutral data formats such as IGES (1980). Neutral data formats provide a middle tier to connect CAD and CAM systems. Thus, Model B can create a collaborative manufacturing environment and make the design data exchange possible for large projects at the international level. Yet, some problems still remain. IGES was designed to exchange geometrical information only, so additional design or manufacturing information (such as feature information) within a proprietary model is ignored. During data exchange, some information may become astray during data transfer; geometry stitching or model repair is often needed. Plus, IGES is not an international standard. As previously discussed, there are also problems common to both Models A and B (Figure 10.1). Different data formats (e.g. IGES and ISO 6983-1, 1982) are used in the designto- manufacturing chain. Data loss occurs in the transaction from design to manufacturing because only low-level, step-by-step sequential machining commands are passed onto the CNC controllers, leaving the complete product model behind. Of particular significance has been the endeavour made by the International Organization for Standardization to introduce the STEP Standard (i.e. ISO 10303-1 [1994]). Major aerospace and automotive companies have proven the value of STEP through production implementations resulting in savings of US $150 million per year (Gallaher, O’Connor & Phelps, 2002, PDES, Inc. 2006). Moreover, STEP has recently been extended to cater to manufacturing data modelling and execution with an aim to fill the information gap between CAD/CAPP/CAM and CNC. The standard is informally known as STEP-compliant Numerical Control, or otherwise STEP-NC for short. It was given an ISO name of “ISO 14649: Data model for Computerized Numerical Controllers (ISO 14649-1, 2003)”, which defines the STEP-NC Application Reference Model. With STEP being extended to model manufacturing information, a new paradigm of integrated CAD/CAPP/CAM/CNC is emerging. This is illustrated in Figure 11.1. The key to this paradigm is that no data conversion is required and the data throughout the design and manufacturing chain are preserved. This chapter focuses on the use of STEP standards to support data exchange between CAD systems as well as facilitate data flow between CAD, CAPP, CAM, and CNC systems. Also discussed are the specific integration issues between CAD and CAPP, CAPP and CAM, and CAM and CNC using STEP standards. STEP-NC data model is a relatively new member in the STEP family, but it completes the entire suite of STEP standards from design to NC machining. Both Physical File Implementation Method (ISO 10303-21, 1994) and XML Implementation Method (ISO/TS 10303-18, 2004) are presented as the two popular ways of implementing STEP and STEP-NC.


Author(s):  
Eugenia Rinaldi ◽  
Sylvia Thun

HiGHmed is a German Consortium where eight University Hospitals have agreed to the cross-institutional data exchange through novel medical informatics solutions. The HiGHmed Use Case Infection Control group has modelled a set of infection-related data in the openEHR format. In order to establish interoperability with the other German Consortia belonging to the same national initiative, we mapped the openEHR information to the Fast Healthcare Interoperability Resources (FHIR) format recommended within the initiative. FHIR enables fast exchange of data thanks to the discrete and independent data elements into which information is organized. Furthermore, to explore the possibility of maximizing analysis capabilities for our data set, we subsequently mapped the FHIR elements to the Observational Medical Outcomes Partnership Common Data Model (OMOP CDM). The OMOP data model is designed to support the conduct of research to identify and evaluate associations between interventions and outcomes caused by these interventions. Mapping across standard allows to exploit their peculiarities while establishing and/or maintaining interoperability. This article provides an overview of our experience in mapping infection control related data across three different standards openEHR, FHIR and OMOP CDM.


Author(s):  
Khushi Gupta ◽  
Tushar Sharma

In the modern world, we use microprocessors which are either based on ARM or x86 architecture which are the most common processor architectures. ARM originally stood for ‘Acorn RISC Machines’ but over the years changed to ‘Advanced RISC Machines’. It was started as just an experiment but showed promising results and now it is omnipresent in our modern devices. Unlike x86 which is designed for high performance, ARM focuses on low power consumption with considerable performance. Because of the advancements in the ARM technology, they are becoming more powerful than their x86 counterparts. In this analysis we will collate the two architectures briefly and conclude which microprocessor will dominate the microprocessor industry. The processor which will perform better in different tests will be more suitable for the reader to use in their application. The shift in the industry towards ARM processors can change how we write softwares which in turn will affect the whole software development environment.


Author(s):  
N. V. Goryuk ◽  

The article investigates automation methods and means of integration of static source security analysis technology. The process of software security analysis, which is implemented by the technology of static analysis of the source code, is studied, and the methods of solving the problem of automation and integration of the technology into the source code development environment are offered. The perspective direction of further development of the technology of static analysis of the source code is established.


Sign in / Sign up

Export Citation Format

Share Document