UG Software-Based Socket Cover Mold Design and Processing

2012 ◽  
Vol 151 ◽  
pp. 409-413
Author(s):  
Shuo Li ◽  
Ming Fei Dong

UG software is one of the most widely used CAD/CAM software in the field of computer aided design and manufacturing. By taking the socket cover as an example, this paper illustrates the application of the UG software-based CAD/CAM function in mold design and processing. And through such procedures as process design, parameter setting, simulation machining, entity processing and etc, real objects of the mold are finally manufactured.

1988 ◽  
Vol 4 (04) ◽  
pp. 280-285
Author(s):  
R. V. Shields

Great emphasis has been attached to the achievement of productivity and producibility benefits through the application of computer-aided design and computer-aided manufacturing (CAD/CAM) technologies. To ensure the achievement of these benefits, it is important that the end user have appropriate software and be able to use it to his advantage. The proper procurement, customization, installation, training, and implementation of software can play a significant role in the effectiveness of CAD/CAM.


Author(s):  
Juan Carlos Campos Rubio ◽  
Eduardo Romeiro Filho

This chapter presents the rapid prototyping and manufacturing concepts applied as means to reducing time between jewellery designs and manufacturing process. Different processes on jewellery modelling production are presented. Nowadays, the use of technologies as CAD/CAM - Computer Aided Design and Manufacturing in high production companies are very disseminated. However, the implementation of these resources at the design and manufacturing processes of jewels and fashion accessories, in small and medium size businesses, is still insipient. As reference, is presented the situation observed in small and medium companies located in Minas Gerais, Brazil.


2017 ◽  
Vol 5 (4) ◽  
Author(s):  
E. B. Brousseau ◽  
S. Thiery ◽  
B. Arnal ◽  
E. Nyiri ◽  
O. Gibaru ◽  
...  

This paper reports a feasibility study that demonstrates the implementation of a computer-aided design and manufacturing (CAD/CAM) approach for producing two-dimensional (2D) patterns on the nanoscale using the atomic force microscope (AFM) tip-based nanomachining process. To achieve this, simple software tools and neutral file formats were used. A G-code postprocessor was also developed to ensure that the controller of the AFM equipment utilized could interpret the G-code representation of tip path trajectories generated using the computer-aided manufacturing (CAM) software. In addition, the error between a machined pattern and its theoretical geometry was also evaluated. The analyzed pattern covered an area of 20 μm × 20 μm. The average machined error in this case was estimated to be 66 nm. This value corresponds to 15% of the average width of machined grooves. Such machining errors are most likely due to the flexible nature of AFM probe cantilevers. Overall, it is anticipated that such a CAD/CAM approach could contribute to the development of a more flexible and portable solution for a range of tip-based nanofabrication tasks, which would not be restricted to particular customised software or AFM instruments. In the case of nanomachining operations, however, further work is required first to generate trajectories, which can compensate for the observed machining errors.


2017 ◽  
Vol 42 (2) ◽  
pp. 117-121
Author(s):  
JT May

SUMMARY Computer-aided design and manufacturing technology enables practitioners to create, in a single appointment, indirect restorations that are esthetic and functionally unique to the patient's situation. The popular effort to perform minimally invasive dentistry using digital techniques with chairside milling can lead dentists to novel individualized restorative treatment. This article demonstrates a conservative anterior partial coverage restoration, utilizing both digital technology and chairside ceramic characterization to achieve an optimal esthetic outcome while preserving healthy tooth structure.


2017 ◽  
Vol 11 (1) ◽  
pp. 44-51 ◽  
Author(s):  
Hans-Rudolf Weiss ◽  
Nicos Tournavitis ◽  
Xiaofeng Nan ◽  
Maksym Borysov ◽  
Lothar Paul

Background: High correction bracing is the most effective conservative treatment for patients with scoliosis during growth. Still today braces for the treatment of scoliosis are made by casting patients while computer aided design (CAD) and computer aided manufacturing (CAM) is available with all possibilities to standardize pattern specific brace treatment and improve wearing comfort. Objective: CAD / CAM brace production mainly relies on carving a polyurethane foam model which is the basis for vacuuming a polyethylene (PE) or polypropylene (PP) brace. Purpose of this short communication is to describe the workflow currently used and to outline future requirements with respect to 3D printing technology. Method: Description of the steps of virtual brace adjustment as available today are content of this paper as well as an outline of the great potential there is for the future 3D printing technology. Results: For 3D printing of scoliosis braces it is necessary to establish easy to use software plug-ins in order to allow adding 3D printing technology to the current workflow of virtual CAD / CAM brace adjustment. Textures and structures can be added to the brace models at certain well defined locations offering the potential of more wearing comfort without losing in-brace correction. Conclusions: Advances have to be made in the field of CAD / CAM software tools with respect to design and generation of individually structured brace models based on currently well established and standardized scoliosis brace libraries.


Author(s):  
Ismail Fidan ◽  
Ken Patton

Advances in computer technology opened new horizons in teaching Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) technologies. This paper will report the outcomes of two current NSF grants, 0311586 and 0302314, funded on Rapid Prototyping (RP) curriculum development. The objective of these RP projects is to provide advanced instruction and laboratory practices in the areas of CAD/CAM/CAE through challenging laboratory assignments and industrial projects that are integrated into any engineering curriculum. These projects create web-based materials, and also adapt and implement RP experiences and educational practices following successful similar models at various engineering schools to enhance pedagogy in design and manufacturing curriculum. Enhanced RP capabilities enable the students to build physical models directly from CAD data, where the prototype communicates important information about parts, including engineering data such as fit and limited functional testing, labeling, highlighting, and appearance simulation. Developed RP labs are used in junior and senior level design and manufacturing courses, including the senior capstone courses.


Sign in / Sign up

Export Citation Format

Share Document