Cutting Force Analysis of Large Branch Crusher Based on the Finite Element

2012 ◽  
Vol 152-154 ◽  
pp. 900-905
Author(s):  
Sheng Tong Yu ◽  
Chun Mei Yang ◽  
Chang Qing Ren ◽  
Ge Luo

At present, our country has stepped up efforts to develop biomass power generation. However, due to the mill not in-depth study of cutting forces and factors in the design of branches crusher which led to the branches crusher can not meet domestic branches of biomass power generation’s demand to raw materials. In the article, the cutting force of the branches grinding has been studied based on BX218 branches crusher. The formula for calculating the cutting force has been deduced. The factors that affect the cutting force have been identified. Finally, ANSYS finite element analysis carried out on the Flying, which is effected by the cutting force.

Author(s):  
Márcio Araújo ◽  
Valter E. Beal ◽  
Armando Sá Ribeiro Júnior ◽  
Luis Antônio Gonçalves Junior

Author(s):  
Varatharajan Prasannavenkadesan ◽  
Ponnusamy Pandithevan

Abstract In orthopedic surgery, bone cutting is an indispensable procedure followed by the surgeons to treat the fractured and fragmented bones. Because of the unsuitable parameter values used in the cutting processes, micro crack, fragmentation, and thermal osteonecrosis of bone are observed. Therefore, prediction of suitable cutting force is essential to subtract the bone without any adverse effect. In this study, the Cowper-Symonds model for bovine bone was developed for the first time. Then the developed model was coupled with the finite element analysis to predict the cutting force. To determine the model constants, tensile tests with different strain rates (10−5/s, 10−4/s, 10−3/s, and 1/s) were conducted on the cortical bone specimens. The developed material model was implemented in the bone cutting simulation and validated with the experiments.


2020 ◽  
Vol 12 (12) ◽  
pp. 168781402097774
Author(s):  
Jiawei Wang ◽  
Fachao Li ◽  
Zibo Chen ◽  
Baishu Li ◽  
Jue Zhu

This paper studies the force and deformation of the connecting channel in Ningbo rail transit construction, which firstly used the mechanical shield method. Steel-concrete composite structural segments are used in the T-joint of connecting channel. The cutting part of the segments are replaced by the concrete and fiberglass instead of reinforced concrete. Basing on a variety of three-dimensional design software and ABAQUS finite element analysis software, a refined finite element analysis model of the special segments is established. By considering the influence of curved joint bolts, the force analysis of the special segments under the structural state before and after construction is performed. According to the analysis and comparison of the deformation of the segments with and without the bolts, it is concluded that the steel-concrete segments can withstand the pressure of the soil before and after the construction. Suggestions for the safety of the design and construction of the segments are put forward.


2011 ◽  
Vol 86 ◽  
pp. 100-103
Author(s):  
Qian Guo ◽  
Chao Lin ◽  
Wei Quan

This paper makes the emulate experimental research of cutting force in high-speed dry gear milling by flying cutter with finite element analysis method by using the established cutting force model yet, makes the comparative analysis for the result of simulation experiment and theoretical calculation, verifies the correctness of cutting force model and calculation method, makes the comparative analysis for the influencing relations and changing laws of cutting force and cutting parameters and so many factors, and reveals the cutting mechanism of high-speed dry gear milling by flying cutter initially. By the research of this paper, it provides basic theory for subsequent cutting machine technology of high-speed dry gear hobbing, and establishes the theoretical basis for the spread and exploitation of this technology.


2011 ◽  
Vol 52-54 ◽  
pp. 1147-1152
Author(s):  
Guang Guo Zhang ◽  
Wei Jiang ◽  
Hong Hua Zhang ◽  
Huan Wang

In the traditional designs of milling cutter, we cannot get the required accuracy of machining as there may be local deformation on the edges, even more the cutter can break down. Aiming at this situation, a finite-element model of straight pin milling cutter with helical tooth are built using Marc, a nonlinear finite-element analysis software, the different cutting forces of the milling cutter during the cutting process are analyzed and the cutting forces of the milling cutter at different parameters are studied. We get the stress, the strain and the temperature distribution of the milling cutter in different situation. Our work offer a theoretical basis of improving stress of the cutter, designing the structure of cutters reasonably and analyzing the cutter failure as well as a new method of analysis and calculation of the cutter life and strength.


2014 ◽  
Vol 623 ◽  
pp. 66-72
Author(s):  
Zhe Fang ◽  
Mei Han ◽  
Yu Yi Li

In the article, the study focus on the computer aid finite element analysis of the rolled-steel pallet. The value of various parameters is determined by the force analysis according to the relevant standard in working condition of shock. Meshing the modal and defining the force and constraint are discussed before the simulation. The calculated value based on Ansys is very similar to the result in the actual situation, which proved that the computer aid analysis can be used in the rolled-steel pallet detection in order to decrease the cost and increase the accuracy.


2012 ◽  
Vol 192 ◽  
pp. 14-18
Author(s):  
Ming Cong ◽  
Jian Song

In this paper, the turning process of 45# steel was simulated and analyzed based on the metal cutting finite element analysis software DEFORM-3D. The analysis result of cutting force was gained. However, due to some reasons of the software itself, there is noise data in analysis results. Thus, it’s needed to filter the data to extract useful information. The selected short-duration and steady-state cutting force data was processed with the use of six-sigma rule through mathematical statistics analysis. As a result, some bad data were rejected. Noise data was filtered out via wavelet analysis and the processed function curve of cutting force that changes with time during the whole cutting course was gained.


2014 ◽  
Vol 716-717 ◽  
pp. 553-556
Author(s):  
Dong Yu Ji

This paper adopts general finite element software to carry out structure design and force analysis for Liujiaba inverted siphon engineering, researching variation law of the inverted siphon’s stress and displacement under various cases in construction process and operating process. Research results provides reliable reference for construction and operating of inverted siphon structure.


Sign in / Sign up

Export Citation Format

Share Document