Evaluation Method and Simulation Analysis of Gap Roundness Error

2009 ◽  
Vol 16-19 ◽  
pp. 1243-1247
Author(s):  
Lei Zhang ◽  
Ying Zhao ◽  
Dong Rong Zheng ◽  
Ke Zhang

Theoretical analysis of existing evaluation method of gap roundness error and existing evaluation model of full roundness error is provided. Mathematical model of gap roundness error’s evaluation with least square method is founded based on the evaluation model of full roundness error, which gives a solution of gap roundness error. The results of the simulation analysis and measuring experiment show that mathematical model of gap roundness error’s evaluation with least square method is correct for computing gap roundness error.

2011 ◽  
Vol 103 ◽  
pp. 30-34 ◽  
Author(s):  
Xin Jie Wu ◽  
Duo Hao ◽  
Rong Rong Fu ◽  
Chao Xu

The roundness error is an important index of mechanical part and its interchangeability, it is the key to quality of product. A new method for calculating the roundness error based on artificial bee colony algorithm has been proposed in this paper. Artificial bee colony algorithm is an evolutionary computation. It has the character of simple technique, easy digital realization and few controlling parameters. Firstly, the basic principle of artificial bee colony algorithm is concisely introduced in this paper. The detailed steps for calculating the roundness error based on artificial bee colony algorithm have been described. Finally experiment results are given. These results have shown that the proposed method can correctly and effectively evaluate roundness error. The proposed method can overcome the local convergence in evaluation of roundness error based on least square method (LSM).


2013 ◽  
Vol 805-806 ◽  
pp. 716-720
Author(s):  
Tao Xu ◽  
Tian Long Shao ◽  
Dong Fang Zhang

Combined with the contents of the study-PSS low-pass link parameter identification. Least-squares method is selected. Using least-square method for PSS low-pass link mathematical model are also deduced. For the results, because of the mathematical model is solving nonlinear equations, cannot used by the Newton method directly. So we choose to use Newton iterations, with this feature, choose to use MATLAB software to solve the equation. Identification of the use of MATLAB software lags after the PSS parameters obtained recognition results compared with national standards, identifying and verifying the practicability.


2011 ◽  
Vol 55-57 ◽  
pp. 2092-2098
Author(s):  
You Xin Luo ◽  
Qi Yuan Liu ◽  
Xiao Yi Che ◽  
Bin Zeng

The forward displacement analysis of parallel mechanism is attributed to find the solutions of complicated nonlinear equations and it is a very difficult process. Taking chaotic sequences as the initial values of the damp least square method, we can find all the solutions of equations quickly. Making use of existing chaos system and discovering new chaos system to generate chaotic sequences with good properties is the key to the damp least square method based on Chaos sequences. Based on utilizing hyper-chaotic Hénon mapping to obtain initial points, a new method of finding all real number solutions of the nonlinear questions is proposed. Using cosine matrix method, the author established the mathematical model of forward displacement for the generalized 3SPS-3CCS parallel robot mechanism and a numerical example is given. Compared to the quaternion method building mathematical model, the result shows cosine matrix method building mathematical model and hyper-chaotic damp least square method to find solution is brief and high calculation efficiency as the calculation is done in real number range. The proposed method has universality which can be used in forward displacement of other parallel mechanism.


Author(s):  
Kentaro Miyago ◽  
Kenyu Uehara ◽  
Takashi Saito

Recently, traffic accidents due to drowsy driving, operation mistake in the power plant by drowsiness and decrease arousal in employment during work have been attracted as problems. To avoid such an accident, arousal level could be quantitatively evaluated in real time. We suggested that the one of the parameters of Duffing oscillator parameters is related to the conventional arousal level using the EEG frequency component. However, in this examination, effects on the EEG from visual and active behavior were considered, but those from hearing also need to be investigated. In this paper, we performed the experiment in the musical environment using rock and classic music to investigate the model parameters for effect of the auditory stimulation, and acquired EEG data in Visual cortex and Frontal lobe. The acquired EEG data was used to identify the model parameters, which were identified solving the inverse problem by Least Square method. Results of investigating correlation between conventional arousal revel and model parameter shows a significant correlation in case of the auditory environmental situation. Moreover, Visual cortex is better than Frontal lobe as a measurement point in this evaluation method.


Author(s):  
PROF. ANJALI J. JOSHI ◽  
DR. JAYANT P. MODAK

This paper presents the approach for the mathematical modeling of maintenance cost for the set up of new Stone Crushing Plant based on the dimensional analysis and multiple regression. Presented maintenance cost mathematical model is derived based on the generated design data. Design data is generated from actual design of all stone crushing plants followed by static and dynamic analysis. Estimation of design data is carried out based on the assumed plant layout. Dimensional analysis is used to make the independent and dependent variables dimensionless and to get dimensionless equation. Later, multiple regression analysis is applied to this dimensionless equation to obtain the index values based on the least square method. The mathematical model of maintenance cost is formulated using these obtained index values. Finally, the formulated model is evaluated on the basis of correlation and root mean square error between the computed values by model and the estimated values.


Author(s):  
Elena Lenchenkova

Objective: To develop a mathematical model of the railroad track based on the initial progressive-type data (laser scanning) in railroad design. Methods: Regression analysis (least-square method), as well as coordinate methods of calculating point position in space were applied. Results: The mathematical model, which could describe the position of the railroad track in three-dimensional space by means of mathematical relations, was obtained. Applicability of approximating models was established. The models make it possible to provide smoothing of laser survey data. Regularization and globalization algorithms of initial data were developed. Practical importance: The introduced model is universal when describing the position of the track at all stages of life cycle of the railway line. It is reasonable to apply the presented model in design engineering in order to balance survey errors, maintain the track in coordinates, as well as to calculate design and profile parameters.


Author(s):  
Yuan Yu ◽  
Cheng Ren ◽  
Yanhua Sun

The geometric parameters of the elastic foil bearing are important basis for designing the foil bearing. Whether the main shape indices of the pressed foils meet the design requirements is the key to evaluate a manufacturing method. The inconsistent curvature radii of the top foils, the inconsistent bump heights of the bumps on the bump foil, the roundness error of the top foil, and the curve profile error of the bump foil may cause the pre-tightening assembly difference and different bearing capacity of each bearing shell. Aiming at the shape error evaluations of the foils for a multi-leaf foil bearing, first, the algorithm of geometric area optimization for circle roundness error is introduced and an evaluation method of arc roundness error is put forward according to the minimum zone principle in this paper. This method can be used to calculate the roundness error of the top foil for a multi-leaf foil bearing. The results show that the corresponding roundness error of the top foil decreases with the increasing of the pressing pressure. The relative roundness error is small (less than 7%), which changes a little with different pressing pressures. For the measurement of a bottom bump foil, the method of matching feature points is used in pre-location and then fine-positioning for the measured curve is implemented based on the least square method in order to eliminate the position error between the measured curve and the design curve. Thus, the curve profile error evaluation of the bottom bump foil for a multi-leaf foil bearing is implemented and the profile error of each bump can be obtained. According to the shape error evaluation values of the top foil and the bump foil, the quality control strategy and the error compensation by improving the mold structure can be further researched.


Sign in / Sign up

Export Citation Format

Share Document