Virtual Design and Structural Optimization of Dry Twin Screw Vacuum Pump with a New Rotor Profile

2009 ◽  
Vol 16-19 ◽  
pp. 1392-1396 ◽  
Author(s):  
Shi Wei Zhang ◽  
Zhi Jun Zhang ◽  
Cheng Hai Xu

Twin screw vacuum pump is an important kind of dry vacuum pump, which is widely used in the oil-free vacuum system. The design of the screw rotor profile directly influences the working performance and manufacture cost of the screw pumps. In this paper, a new rotor profile for twin screw vacuum pump is introduced which is comprised of the cycloid curve, the dedendum circle arc, the involute curve and the addendum circle arc. The processes of three-dimensional modeling, motion simulation, interference checking and structural optimization for twin screw vacuum pumps are studied by means of Solidworks software. The works provide theoretical basis for optimal designing and reference for test prototype manufacturing. The results showed the performance of the vacuum pump according with the designer’s intention.

Author(s):  
F Cao ◽  
T Gao ◽  
J Jiao ◽  
T Pan ◽  
Z Xing

Rotor profile generation and geometry characteristics play a dominant role in developing twin-screw multi-phase pumps. The aim of this work is to present mathematical procedures to calculate screw rotor profile generation, design rotor cutter tools, and rotor geometry characteristics with given stocks for twin-screw multi-phase pumps. Analyses of the profile generation of a screw rotor for a multi-phase pump are carried out. The resulting rotor profile with different stocks is developed on the basis of the calculation of the forming cutter tool profile. An iso-height contour plot is presented for describing the shape and size of the overlapped cavity of the rotors. By inspecting the iso-height contour plot, analysis of all the possible leakage flow through the inter-lobe clearance is performed. According to the iso-height contour plot, the blowhole provides the major leakage path for the basic chambers through the overlapped cavity. The minimum normal height of the overlapped cavity has a linear relationship with the stock. The larger stocks lead to greater leakage and reduce pump performance. The leakage flow through the overlapped cavity will be aggravated and the performance of the twin-screw multi-phase pump will decline with the increasing lead of the screw rotor.


2013 ◽  
Vol 427-429 ◽  
pp. 158-161
Author(s):  
Lin Feng Wu ◽  
Guo Hua Sun ◽  
Hua Yi Guo

With the development of governing the Yellow River by the technology,it is inevitable to research the construction equipment to adapt to flood-prevention work. The cluthing and casting excavator for flood-prevention is produced under such kind of background. This equipment based on the working device of backhoe track hydraulic excavator was improved, the computer technology is introduced in the design of working device which can be for three-dimensional modeling,assembly and motion simulation analysis. The virtual design by Pro/E for the structural and motion of produces can short the design and manufacture time and cut down the cost, thus it can save the massive funds.The completive power of society is strengthen.


2011 ◽  
Vol 55-57 ◽  
pp. 550-554
Author(s):  
Chun Fang Zhao ◽  
Jiang Jiao Lin ◽  
Li Xue Zhu

Three-dimensional model of the parts of the extrusion extruder for leisure food is created as an illustrator, which could be adopted up to form an assemble facility to the whole set of the machine conveniently by a software of SolidWorks in the paper.Some key specific modeling procedures are proved to show the advantages of Solidworks overweigh AutoCAD in three-dimensional modeling technology. The method put an adaptable way to short the whole lifetime of industrial product design.


2013 ◽  
Vol 827 ◽  
pp. 302-308
Author(s):  
Tao Sun ◽  
Lu Fang Qin

According to the load calculation of blade, the required maximum torque of rotational blade is obtained. A mathematic analysis method can be used to deduce the following results: the thrust of hydraulic cylinder is related to crank length, the connecting rod length, the eccentricity, the installation angle, and the variable-pitch driving force. Finally, the optimal values of pitch-controlled actuator are obtained. Based on three-dimensional modeling, assembly and dynamic simulation analysis, the virtual design of variable blade pitch mechanism is completed by using the software Pro/E. By means of dynamic simulation analysis, the rationality of this design is verified, facilitating the further on development mechanism's optimized design.


1997 ◽  
Vol 119 (3) ◽  
pp. 664-670 ◽  
Author(s):  
K. Hanjalic´ ◽  
N. Stosˇic´

This paper presents a method for the design of twin screw compressors and expanders, which is based on a differential algorithm for defining the rotor profile and an analytical model of the fluid flow and thermodynamic processes within the machine. Part I of the paper presents a method for screw rotor profile generation which simplifies and improves design procedures. An example is given of its use in the development of a new “N” rotor profile, which is shown to be superior to other well-known types. Part II describes a numerical model of the thermodynamic and fluid flow processes within screw machines, which is valid for both the compressor and expander modes of operation. It includes the use of the equations of conservation of mass and energy applied to an instantaneous control volume of trapped fluid within the machine with allowance for fluid leakage, oil or other fluid injection, heat transfer, and the assumption of real fluid properties. By simultaneous solution of these equations, pressure-volume diagrams may be derived of the entire compression or expansions, process within the machine. The procedure has been developed over a period of fifteen years and validated with experimental results obtained from both reciprocating and screw compressors and screw expanders, some of which are included. The rotor profile generation processor, thermofluid solver and optimizer, together with preprocessing facilities for the input data and graphical post-processing and CAD interface, have been incorporated into a design package which provided a suitable tool for analysis and optimization of twin screw machine design. An example of its use is given in the optimization of the gate tip radius of a selected compressor design.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Zhihuang Shen

A new design method based on pixel solution is proposed to achieve an efficient and high-precision design of a twin-screw rotor profile. This method avoids the complex analytic calculations in the traditional envelope principle. The best approximation of the pixels of the rotor conjugate motion sweeping surface in the lattice screen pixels is illuminated using a specific color. The sweeping surface of the screw rotor single-tooth profile is roughly scanned to capture the base point set of the sweeping surface boundary pixels. The chord length and tilt angle of each interval are calculated using the value of the base point set to adjust the position, phase, and magnification of each interval sweeping surface. Each interval sweeping surface is finely scanned to capture the data point set of the subinterval, and then the data point set is converted to the same coordinate system to generate the conjugated rotor profile. Finally, an example is used to verify the feasibility and adaptability of this method. The approach provided can be used to design screw rotor profiles with high precision.


1998 ◽  
Vol 122 (4) ◽  
pp. 543-552 ◽  
Author(s):  
Shyh-Haur Su ◽  
Ching-Huan Tseng

This paper proposes a systematic synthesis method for twin-screw rotor profiles for compressors. Both “original generating curves” and “generated curves” are distributed on each rotor profile, and all the geometric parameters of these curves can be determined with satisfying the conditions of continuity in tangency by given only several specific parameter values. The contact lines on rotor surfaces and the blowhole area calculation are also presented. Three cases of optimization problems are shown in this paper and both contact-line length and blowhole area are reduced when letting the contact-line length be the object function with a constraint of blowhole area. [S1050-0472(00)01103-X]


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Yu-Ren Wu ◽  
Zhang-Hua Fong

This paper proposes a method for designing the rotor profiles of twin-screw compressors using a rack defined in the normal plane. All tooth profile segments are explicitly defined as tangent continuous in the normal section to generate a pair of conjugated rotors. Numerical comparisons between the two types of screw rotor tooth profile design, one based on a normal system, the other on an axial system, show the advantages of using the normal-rack generation method (NRGM). Most particularly, this method allows the same hob used for screw rotors to be used to manufacture mating rotors even as the helix angle varies, because in a normal system the circular pitch remains the same. The numerical results also indicate that the rotor tooth thickness generated by the NRGM rack cutter can prevent serious deflection for a variety of helix angles and tooth combinations.


Sign in / Sign up

Export Citation Format

Share Document