Study of a screw rotor with different stocks and leads for a twin-screw multiphase pump

Author(s):  
F Cao ◽  
T Gao ◽  
J Jiao ◽  
T Pan ◽  
Z Xing

Rotor profile generation and geometry characteristics play a dominant role in developing twin-screw multi-phase pumps. The aim of this work is to present mathematical procedures to calculate screw rotor profile generation, design rotor cutter tools, and rotor geometry characteristics with given stocks for twin-screw multi-phase pumps. Analyses of the profile generation of a screw rotor for a multi-phase pump are carried out. The resulting rotor profile with different stocks is developed on the basis of the calculation of the forming cutter tool profile. An iso-height contour plot is presented for describing the shape and size of the overlapped cavity of the rotors. By inspecting the iso-height contour plot, analysis of all the possible leakage flow through the inter-lobe clearance is performed. According to the iso-height contour plot, the blowhole provides the major leakage path for the basic chambers through the overlapped cavity. The minimum normal height of the overlapped cavity has a linear relationship with the stock. The larger stocks lead to greater leakage and reduce pump performance. The leakage flow through the overlapped cavity will be aggravated and the performance of the twin-screw multi-phase pump will decline with the increasing lead of the screw rotor.

2009 ◽  
Vol 16-19 ◽  
pp. 1392-1396 ◽  
Author(s):  
Shi Wei Zhang ◽  
Zhi Jun Zhang ◽  
Cheng Hai Xu

Twin screw vacuum pump is an important kind of dry vacuum pump, which is widely used in the oil-free vacuum system. The design of the screw rotor profile directly influences the working performance and manufacture cost of the screw pumps. In this paper, a new rotor profile for twin screw vacuum pump is introduced which is comprised of the cycloid curve, the dedendum circle arc, the involute curve and the addendum circle arc. The processes of three-dimensional modeling, motion simulation, interference checking and structural optimization for twin screw vacuum pumps are studied by means of Solidworks software. The works provide theoretical basis for optimal designing and reference for test prototype manufacturing. The results showed the performance of the vacuum pump according with the designer’s intention.


1997 ◽  
Vol 119 (3) ◽  
pp. 664-670 ◽  
Author(s):  
K. Hanjalic´ ◽  
N. Stosˇic´

This paper presents a method for the design of twin screw compressors and expanders, which is based on a differential algorithm for defining the rotor profile and an analytical model of the fluid flow and thermodynamic processes within the machine. Part I of the paper presents a method for screw rotor profile generation which simplifies and improves design procedures. An example is given of its use in the development of a new “N” rotor profile, which is shown to be superior to other well-known types. Part II describes a numerical model of the thermodynamic and fluid flow processes within screw machines, which is valid for both the compressor and expander modes of operation. It includes the use of the equations of conservation of mass and energy applied to an instantaneous control volume of trapped fluid within the machine with allowance for fluid leakage, oil or other fluid injection, heat transfer, and the assumption of real fluid properties. By simultaneous solution of these equations, pressure-volume diagrams may be derived of the entire compression or expansions, process within the machine. The procedure has been developed over a period of fifteen years and validated with experimental results obtained from both reciprocating and screw compressors and screw expanders, some of which are included. The rotor profile generation processor, thermofluid solver and optimizer, together with preprocessing facilities for the input data and graphical post-processing and CAD interface, have been incorporated into a design package which provided a suitable tool for analysis and optimization of twin screw machine design. An example of its use is given in the optimization of the gate tip radius of a selected compressor design.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Zhihuang Shen

A new design method based on pixel solution is proposed to achieve an efficient and high-precision design of a twin-screw rotor profile. This method avoids the complex analytic calculations in the traditional envelope principle. The best approximation of the pixels of the rotor conjugate motion sweeping surface in the lattice screen pixels is illuminated using a specific color. The sweeping surface of the screw rotor single-tooth profile is roughly scanned to capture the base point set of the sweeping surface boundary pixels. The chord length and tilt angle of each interval are calculated using the value of the base point set to adjust the position, phase, and magnification of each interval sweeping surface. Each interval sweeping surface is finely scanned to capture the data point set of the subinterval, and then the data point set is converted to the same coordinate system to generate the conjugated rotor profile. Finally, an example is used to verify the feasibility and adaptability of this method. The approach provided can be used to design screw rotor profiles with high precision.


1998 ◽  
Vol 122 (4) ◽  
pp. 543-552 ◽  
Author(s):  
Shyh-Haur Su ◽  
Ching-Huan Tseng

This paper proposes a systematic synthesis method for twin-screw rotor profiles for compressors. Both “original generating curves” and “generated curves” are distributed on each rotor profile, and all the geometric parameters of these curves can be determined with satisfying the conditions of continuity in tangency by given only several specific parameter values. The contact lines on rotor surfaces and the blowhole area calculation are also presented. Three cases of optimization problems are shown in this paper and both contact-line length and blowhole area are reduced when letting the contact-line length be the object function with a constraint of blowhole area. [S1050-0472(00)01103-X]


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Yu-Ren Wu ◽  
Zhang-Hua Fong

This paper proposes a method for designing the rotor profiles of twin-screw compressors using a rack defined in the normal plane. All tooth profile segments are explicitly defined as tangent continuous in the normal section to generate a pair of conjugated rotors. Numerical comparisons between the two types of screw rotor tooth profile design, one based on a normal system, the other on an axial system, show the advantages of using the normal-rack generation method (NRGM). Most particularly, this method allows the same hob used for screw rotors to be used to manufacture mating rotors even as the helix angle varies, because in a normal system the circular pitch remains the same. The numerical results also indicate that the rotor tooth thickness generated by the NRGM rack cutter can prevent serious deflection for a variety of helix angles and tooth combinations.


2019 ◽  
Vol 11 (10) ◽  
pp. 168781401988378 ◽  
Author(s):  
Shu Cao ◽  
Xueming He ◽  
Rong Zhang ◽  
Junfeng Xiao ◽  
Guojiang Shi

The female/male screw rotor profile design for a twin screw compressor poses challenges such as frequent parameter modification and a difficult-to-build performance test platform, which affect the efficiency of a rotor profile design. To address these problems, a new idea of applying a B-spline curve to a twin screw compressor rotor profile design is proposed in this article. In addition, the design result underwent fluid simulation based on fluid dynamics technology. This method overcomes the aforementioned challenges. As a meshing line has one-to-one mapping relationship with the rotor profile and reflects important performance parameters of the rotor profile, the method of deducing female and male rotor profiles for a twin screw compressor from a meshing line is proposed. Furthermore, the B-spline curve is used as a composition curve of the meshing line to achieve fast local adjustment of the rotor tooth profile. Based on existing rotor profiles, a meshing line is designed via the B-spline curve, and female and male rotor profiles are derived in reverse. The final rotor profile underwent fluid simulation via computational fluid dynamics analysis under various conditions to analyze the pattern of the internal flow field, which is compared with the results from conventional design.


2017 ◽  
Vol 873 ◽  
pp. 308-313
Author(s):  
Jian Hua Qin ◽  
Wen Li ◽  
Cheng Yun Deng

Screw rotor is a vital factor affecting the working efficiency of twin screw air compressor. Therefore, a type of twin screw air compressor in coal mine production process is taken as the research object. Firstly, the working principle and process of female and male rotor was introduced and analyzed. Then, according to the principle of parameter selection of the female and male rotor, the relevant design parameters of the female and male rotor are given. Finally, the vector equation and the tooth surface equation of the segmented line are deduced and established respectively for the end face profile and end face tooth surface of the rotor, the area and volume of the tooth are also calculated. The equation of the tooth surface is set up by rotation of rotor’s tooth direction, the inter-tooth area is composed of multi-section smooth curve and the top arc connected to form a circle, which can be obtained by means of analytical method. In order to better meet the requirements of the machining process, it is necessary to coordinate the female and male rotor profile on the coordinate axis when the end face of the rotor is non-symmetrical. This paper provides an important reference for selecting parameters of the rotor of the female and male and calculation of rotor profile.


Author(s):  
Minh-Thuận Hoàng ◽  
Yu-Ren Wu

In practical production, it is impossible even to measure the inter-lobe (meshing) clearance of a screw rotor pair. However, understanding of the clearance distribution is essential since it is a major leakage path which greatly affects the twin-screw pump performance. Previous publications did not disclose explicit detail on how to calculate the meshing clearance for screw rotor pairs with point-meshing features. Therefore, this study proposes a meshing clearance calculation method for screw rotor pairs with point-meshing features. The complex meshing clearance can be simply determined by calculating the shortest distance between two normal-rack profiles generated using point-enveloping principle. Clearance distributions are much more intelligible to be exhibited on a 3-D contact line and the rotor profile. Due to its immeasurability in practice, the adaptability and the solution accuracy of the proposed numerical method are verified by applications on different rotor profiles and comparisons with measured results from a 3-D CAD model. The meshing clearance in a variable-pitch screw rotor pair and the clearance adjustability are also illustrated through the proposed examples.


Sign in / Sign up

Export Citation Format

Share Document