Application of Real-Time Monitoring and Data Web Sharing to Landslides

2012 ◽  
Vol 166-169 ◽  
pp. 2787-2793
Author(s):  
Hong De Wang ◽  
Qi Lang Le ◽  
Xiu Yuan Yang ◽  
You Long Gao

Acquiring instant information and sharing massive data are indispensable elements in social informatization. Real-time monitoring is realized with the support of computer and communication technologies. The monitoring facilities which are controlled by communication network terminal computers would collect and transfer data according to established procedures or real-time instructions. That is, data could be acquired under all weather and no duty conditions. Then the acquired massive data could be widely shared by issuing on Internet Web. This whole procedure is called real-time monitoring. Demonstration station for real-time monitoring and prewarning is just used to issue monitoring instructions, collect and transfer real-time data through GPRS wireless network between local monitoring stations and central station on the basis of computer and modern communication technologies. So the monitoring data elements could be gathered on central station server computer through communication network, and then be Web published and shared through the connection of central station sever computer and the Internet. Thus, informatization for landslides monitoring could be realized, and information could be optimally utilized. The geologic hazard monitoring and prewarning demonstration station in Wushan County was a good example of real-time monitoring and data Web sharing for landslides, which has greatly improved the level of geologic hazard monitoring and prewarning in China.

Author(s):  
Sugondo Hadiyoso ◽  
Akhmad Alfaruq ◽  
Rohmat Tulloh ◽  
Yuyun Siti Rohmah ◽  
Erwin Susanto

The development of telehealth technology in monitoring systems has been widely used to support applications in the health sector. The aim is to provide easy access for the community. One of the implications is a real-time monitoring system based on the Internet of Things (IoT) platform. Some health vital signs that are the focus of observation are ECG signal, SpO2, blood pressure and Heart rate which can provide heart health information. In this study an integrated system has been implemented, namely Vital Sign distributed monitoring system through the internet network. The implemented system was able to acquire vital sign then send data to the internet cloud to be stored and processed further for real-time monitoring needs by interested parties. An Android based application that was developed called iHealth VitalSign monitor capable of sending, processing and representing data in numerical and graphical forms. The average delay for each packet delivery was 154.73 ms and conform with the ITU-T recommendations for real-time data transfer. HR detection algorithms have been evaluated on real-time ECG signals, more than 2100 beats were tested and obtained an average accuracy of 98.78%. With this proposed application, it is hoped that it can increase the penetration of telehealth services.


Author(s):  
Haqi Khalid ◽  
Shaiful Jahari Hashim ◽  
Sharifah Mumtazah Syed Ahamed ◽  
Fazirulhisyam Hashim ◽  
Muhammad Akmal Chaudhary

Repositor ◽  
2020 ◽  
Vol 2 (5) ◽  
pp. 541
Author(s):  
Denni Septian Hermawan ◽  
Syaifuddin Syaifuddin ◽  
Diah Risqiwati

AbstrakJaringan internet yang saat ini di gunakan untuk penyimpanan data atau halaman informasi pada website menjadi rentan terhadap serangan, untuk meninkatkan keamanan website dan jaringannya, di butuhkan honeypot yang mampu menangkap serangan yang di lakukan pada jaringan lokal dan internet. Untuk memudahkan administrator mengatasi serangan digunakanlah pengelompokan serangan dengan metode K-Means untuk mengambil ip penyerang. Pembagian kelompok pada titik cluster akan menghasilkan output ip penyerang.serangan di ambil sercara realtime dari log yang di miliki honeypot dengan memanfaatkan MHN.Abstract The number of internet networks used for data storage or information pages on the website is vulnerable to attacks, to secure the security of their websites and networks, requiring honeypots that are capable of capturing attacks on local networks and the internet. To make it easier for administrators to tackle attacks in the use of attacking groupings with the K-Means method to retrieve the attacker ip. Group divisions at the cluster point will generate the ip output of the attacker. The strike is taken as realtime from the logs that have honeypot by utilizing the MHN.


2012 ◽  
Vol 3 (1) ◽  
pp. 83-93
Author(s):  
Cihan Varol ◽  
Henry Neumann

To assist business intelligence companies dealing with data preparation problems, different approaches have been developed to handle the dirty data. However, these data cleansing approaches do not have real-time monitoring capabilities. Therefore, business intelligence companies and their clients are not able to predict the final outcome before running all business process. This yields an extra cost for the company if the data are highly corrupted. Therefore, to reduce cost for these types of businesses, the authors design a framework that monitors the quality attributes during the data cleansing process. Moreover, the system provides feedback to the user and allows the user to restructure the workflow based on quality attributes. The main concept of the framework is based on client-server architecture that uses multithreading to allow real-time monitoring of the process. A child thread is dedicated to run and another is dedicated to monitor the processes and give feedback to the user. The real-time monitoring system not only displays the cleansing process done on the data set, but also estimates the risk propagation probabilities in the data cleansing process. De-duplication elimination, address normalization, spelling correction for personal names, and non-ASCII character removal techniques are employed.


2021 ◽  
Author(s):  
Fuchao Sun ◽  
Xiaohan Pei ◽  
Xubo Gai ◽  
Shuang Sun ◽  
Shifeng Hu

Abstract Polymer flood is proved an effective method for EOR in China. Traditional segmented polymer injection technique cannot obtain continuous layer parameters. Real-time monitoring is necessary for polymer flood because downhole pressure and flowrate vary more often than waterflood. Existing technique for layered monitoring and flowrate adjustment is wireline test. There is no smart technique which can realize real-time monitoring and automatic flowrate control. In this paper, a smart segmented injection technique for polymer flood well is introduced. A smart distributor is permanently placed in each layer. It is composed of flowmeter, temperature sensor, two pressure sensors, downhole choke and electrical control unit. The special flowmeter is adopted for polymer flowrate test. All the distributors are connected together by a single control line which is set outside of the tubing string. Operator can read the data of each layer and adjust the flowrate whenever needed at any time which makes the technique a smart one. The smart technique for polymer flood wells has been implemented in a polymer well in Daqing oilfield of China. A case study for smart segmented polymer injection pilot is introduced in detail including technical principle, indoor test results, construction process and adjustment process. The application results show that the operator on the ground can easily obtain downhole tubing pressure, layer annulus pressure, temperature and flowrate on line. The sample time can be set to any one between 1-65536s according to geological engineer's advice. There is no limitation caused by battery power because the distributor is powered by cable on the ground. In terms of adjustment, the flowrate can be adjusted according to the target value. And it can also be regulated at any time manually, just needing pushing the mouse in the office. The application also displays that the smart segmented technique has the advantage for polymer injection because of larger change of layered parameters. It can provide more real-time data for oil development engineer and the data are beneficial for better understanding and optimization of the reservoir. Therefore, the smart segmented polymer injection has a great potential for EOR based on polymer flood.


Sign in / Sign up

Export Citation Format

Share Document