scholarly journals Analisa Real-Time Data log honeypot menggunakan Algoritma K-Means pada serangan Distributed Denial of Service

Repositor ◽  
2020 ◽  
Vol 2 (5) ◽  
pp. 541
Author(s):  
Denni Septian Hermawan ◽  
Syaifuddin Syaifuddin ◽  
Diah Risqiwati

AbstrakJaringan internet yang saat ini di gunakan untuk penyimpanan data atau halaman informasi pada website menjadi rentan terhadap serangan, untuk meninkatkan keamanan website dan jaringannya, di butuhkan honeypot yang mampu menangkap serangan yang di lakukan pada jaringan lokal dan internet. Untuk memudahkan administrator mengatasi serangan digunakanlah pengelompokan serangan dengan metode K-Means untuk mengambil ip penyerang. Pembagian kelompok pada titik cluster akan menghasilkan output ip penyerang.serangan di ambil sercara realtime dari log yang di miliki honeypot dengan memanfaatkan MHN.Abstract The number of internet networks used for data storage or information pages on the website is vulnerable to attacks, to secure the security of their websites and networks, requiring honeypots that are capable of capturing attacks on local networks and the internet. To make it easier for administrators to tackle attacks in the use of attacking groupings with the K-Means method to retrieve the attacker ip. Group divisions at the cluster point will generate the ip output of the attacker. The strike is taken as realtime from the logs that have honeypot by utilizing the MHN.

Author(s):  
Haqi Khalid ◽  
Shaiful Jahari Hashim ◽  
Sharifah Mumtazah Syed Ahamed ◽  
Fazirulhisyam Hashim ◽  
Muhammad Akmal Chaudhary

Author(s):  
Sridharan Chandrasekaran ◽  
G. Suresh Kumar

Rate of Penetration (ROP) is one of the important factors influencing the drilling efficiency. Since cost recovery is an important bottom line in the drilling industry, optimizing ROP is essential to minimize the drilling operational cost and capital cost. Traditional the empirical models are not adaptive to new lithology changes and hence the predictive accuracy is low and subjective. With advancement in big data technologies, real- time data storage cost is lowered, and the availability of real-time data is enhanced. In this study, it is shown that optimization methods together with data models has immense potential in predicting ROP based on real time measurements on the rig. A machine learning based data model is developed by utilizing the offset vertical wells’ real time operational parameters while drilling. Data pre-processing methods and feature engineering methods modify the raw data into a processed data so that the model learns effectively from the inputs. A multi – layer back propagation neural network is developed, cross-validated and compared with field measurements and empirical models.


2007 ◽  
Vol 353-358 ◽  
pp. 2632-2635
Author(s):  
Pei Yu Li ◽  
Da Peng Tan ◽  
Tao Qing Zhou ◽  
Bo Yu Lin

Aiming at some problems in the fields of industry monitoring technology (IMT) such as bad dynamic ability and poor versatility, this paper brought forward a kind of intelligent Status monitoring and Fault diagnosis Network System (SFNS) based on UPnP-Universal Plug and Play. The model for fault diagnosis network system was established according to characteristics and requirements of IMT network, and system network architecture was designed and realized by UPnP. Using embedded system technology, real-time data collection node, monitoring center node and data storage server were designed, and that supplies powerful real-time data support for SFNS. Industry fields experiments proved that this system can realize self recognition, seamless linkage and other self adapting ability, and can break through the limitation of real IP address to achieve real-time remote monitoring on line.


2014 ◽  
Vol 1049-1050 ◽  
pp. 2001-2005
Author(s):  
Hua Wang ◽  
Bing Liu ◽  
Huan Ming Liu ◽  
Hui Fen Duan ◽  
Jun Lei Bao

In order to make up the real-time performance of tracking and control information database, this paper design a kind of two-layer’s real-time data storage model based on memory database and relational database. In this article, the two-layer’s real-time data storage mechanism and life cycle are expounded in detail, analyzing and inducing the real-time data characteristic and storage strategy, putting forward the memory database’s self-adaptive index algorithm of T-tree index and hash index, and introducing the database synchronization mechanism between the memory database and relational database and so on. In this way, so as to improve and optimize the real-time, reliability and security of database, provides a reliable data guarantee for future expansion of the real-time application.


2021 ◽  
Vol 7 ◽  
pp. e500
Author(s):  
Mina Younan ◽  
Essam H. Houssein ◽  
Mohamed Elhoseny ◽  
Abd El-mageid Ali

The Internet of Things (IoT) has penetrating all things and objects around us giving them the ability to interact with the Internet, i.e., things become Smart Things (SThs). As a result, SThs produce massive real-time data (i.e., big IoT data). Smartness of IoT applications bases mainly on services such as automatic control, events handling, and decision making. Consumers of the IoT services are not only human users, but also SThs. Consequently, the potential of IoT applications relies on supporting services such as searching, retrieving, mining, analyzing, and sharing real-time data. For enhancing search service in the IoT, our previous work presents a promising solution, called Cluster Representative (ClRe), for indexing similar SThs in IoT applications. ClRe algorithms could reduce similar indexing by O(K − 1), where K is number of Time Series (TS) in a cluster. Multiple extensions for ClRe algorithms were presented in another work for enhancing accuracy of indexed data. In this theme, this paper studies performance analysis of ClRe algorithms, proposes two novel execution methods: (a) Linear execution (LE) and (b) Pair-merge execution (PME), and studies sorting impact on TS execution for enhancing similarity rate for some ClRe extensions. The proposed execution methods are evaluated with real examples and proved using Szeged-weather dataset on ClRe 3.0 and its extensions; where they produce representatives with higher similarities compared to the other extensions. Evaluation results indicate that PME could improve performance of ClRe 3.0 by = 20.5%, ClRe 3.1 by = 17.7%, and ClRe 3.2 by = 6.4% in average.


Author(s):  
Dazhong Wu ◽  
Janis Terpenny ◽  
Li Zhang ◽  
Robert Gao ◽  
Thomas Kurfess

Over the past few decades, both small- and medium-sized manufacturers as well as large original equipment manufacturers (OEMs) have been faced with an increasing need for low cost and scalable intelligent manufacturing machines. Capabilities are needed for collecting and processing large volumes of real-time data generated from manufacturing machines and processes as well as for diagnosing the root cause of identified defects, predicting their progression, and forecasting maintenance actions proactively to minimize unexpected machine down times. Although cloud computing enables ubiquitous and instant remote access to scalable information and communication technology (ICT) infrastructures and high volume data storage, it has limitations in latency-sensitive applications such as high performance computing and real-time stream analytics. The emergence of fog computing, Internet of Things (IoT), and cyber-physical systems (CPS) represent radical changes in the way sensing systems, along with ICT infrastructures, collect and analyze large volumes of real-time data streams in geographically distributed environments. Ultimately, such technological approaches enable machines to function as an agent that is capable of intelligent behaviors such as automatic fault and failure detection, self-diagnosis, and preventative maintenance scheduling. The objective of this research is to introduce a fog-enabled architecture that consists of smart sensor networks, communication protocols, parallel machine learning software, and private and public clouds. The fog-enabled architecture will have the potential to enable large-scale, geographically distributed online machine and process monitoring, diagnosis, and prognosis that require low latency and high bandwidth in the context of data-driven cyber-manufacturing systems.


Sign in / Sign up

Export Citation Format

Share Document