Study on the Dynamic Characteristic for Spar Type Floating Foundation of Offshore Wind Turbine

2012 ◽  
Vol 170-173 ◽  
pp. 2316-2321
Author(s):  
Ruo Yu Zhang ◽  
Chao He Chen ◽  
You Gang Tang

In this paper, the dynamic behaviors are studied for Spar type floating foundation of a 3kW in the 10m deep water considering the coupled wind turbine-tower-floating foundation and mooring lines and ocean environment load effects. The paper focus on the key issues of design of floating foundation, such as coupling dynamic analysis model and calculating method. The finite element models are established and dynamic responses of floating wind turbine system under different combinations of turbulent wind, constant current and irregular wave are calculated in frequency and time domain with SESAM software. The motion performance and lines’ tension are investigated, and some valuable conclusions are drawn. The results show that the Spar type floating foundation and mooring system can work in the ocean environment which significant wave height less than 2m, the designed large water-entrapment plate can minimized the motion of floating foundation obviously.

Author(s):  
Yougang Tang ◽  
Jun Hu ◽  
Liqin Liu

The wind resources for ocean power generation are mostly distributed in sea areas with the distance of 5–50km from coastline, whose water depth are generally over 20m. To improve ocean power output and economic benefit of offshore wind farm, it is necessary to choose floating foundation for offshore wind turbine. According to the basic data of a 600kW wind turbine with a horizontal shaft, the tower, semi-submersible foundation and mooring system are designed in the 60-meter-deep sea area. Precise finite element models of the floating wind turbine system are established, including mooring lines, floating foundation, tower and wind turbine. Dynamic responses for the floating foundation of offshore wind turbine are investigated under wave load in frequency domain.


2019 ◽  
Vol 7 (4) ◽  
pp. 115 ◽  
Author(s):  
Yane Li ◽  
Conghuan Le ◽  
Hongyan Ding ◽  
Puyang Zhang ◽  
Jian Zhang

The paper discusses the effects of mooring configurations on the dynamic response of a submerged floating offshore wind turbine (SFOWT) for intermediate water depths. A coupled dynamic model of a wind turbine-tower-floating platform-mooring system is established, and the dynamic response of the platform, tensions in mooring lines, and bending moment at the tower base and blade root under four different mooring configurations are checked. A well-stabilized configuration (i.e., four vertical lines and 12 diagonal lines with an inclination angle of 30°) is selected to study the coupled dynamic responses of SFOWT with broken mooring lines, and in order to keep the safety of SFOWT under extreme sea-states, the pretension of the vertical mooring line has to increase from 1800–2780 kN. Results show that the optimized mooring system can provide larger restoring force, and the SFOWT has a smaller movement response under extreme sea-states; when the mooring lines in the upwind wave direction are broken, an increased motion response of the platform will be caused. However, there is no slack in the remaining mooring lines, and the SFOWT still has enough stability.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 418 ◽  
Author(s):  
Conghuan Le ◽  
Yane Li ◽  
Hongyan Ding

A submerged floating offshore wind turbine (SFOWT) is proposed for intermediate water depth (50–200 m). An aero-hydro-servo-elastic-mooring coupled dynamic analysis was carried out to investigate the coupled dynamic response of the SFOWT under different mooring conditions subjected to combined turbulent wind and irregular wave environments. The effects of different parameters, namely, the tether length, pretension and the tether failure, on the performance of SFOWT were investigated. It is found that the tether length has significant effects on the motion responses of the surge, heave, pitch and yaw but has little effects on the tower fore-aft displacements and the tether tensions. The increased pretension can result in the increase of the natural frequencies of surge, heave and yaw significantly. The influence of tether failure on the SFOWT performance was investigated by comparing the responses with those of the intact mooring system. The results show that the SFOWT with a broken tether still has a good performance in the operational condition.


Author(s):  
Wenhua Wang ◽  
Zhen Gao ◽  
Xin Li ◽  
Torgeir Moan ◽  
Bin Wang

In the last decade the wind energy industry has developed rapidly in China, especially offshore. For a water depth less than 20m, monopile and multi-pile substructures (tripod, pentapod) are applied widely in offshore wind farms. Some wind farms in China are located in high seismicity regions, thus, the earthquake load may become the dominant load for offshore wind turbines. This paper deals with the seismic behavior of an offshore wind turbine (OWT) consisting of the NREL 5MW baseline wind turbine, a pentapod substructure and a pile foundation of a real offshore wind turbine in China. A test model of the OWT is designed based on the hydro-elastic similarity. Test cases of different load combinations are performed with the environmental conditions generated by the Joint Earthquake, Wave and Current Simulation System and the Simple Wind Field Generation System at Dalian University of Technology, China, in order to investigate the structural dynamic responses under different load conditions. In the tests, a circular disk is used to model the rotor-nacelle system, and a force gauge is fixed at the center of the disk to measure the wind forces during the tests. A series of accelerometers are arranged along the model tower and the pentapod piles, and strain gauges glued on the substructure members are intended to measure the structural dynamic responses. A finite element model of the complete wind turbine is also established in order to compare the theoretical results with the test data. The hydro-elastic similarity is validated based on the comparison of the measured dynamic characteristics and the results of the prototype modal analysis. The numerical results agree well with the experimental data. Based on the comparisons of the results, the effect of the wind and sea loads on the structural responses subjected to seismic is demonstrated, especially the influence on the global response of the structure. It is seen that the effect of the combined seismic, wind, wave and current load conditions can not be simply superimposed. Hence the interaction effect in the seismic analysis should be considered when the wind, wave and current loads have a non-negligible effect.


Author(s):  
H. K. Jang ◽  
H. C. Kim ◽  
M. H. Kim ◽  
K. H. Kim

Numerical tools for a single floating offshore wind turbine (FOWT) have been developed by a number of researchers, while the investigation of multi-unit floating offshore wind turbines (MUFOWT) has rarely been performed. Recently, a numerical simulator was developed by TAMU to analyze the coupled dynamics of MUFOWT including multi-rotor-floater-mooring coupled effects. In the present study, the behavior of MUFOWT in time domain is described through the comparison of two load cases in maximum operational and survival conditions. A semi-submersible floater with four 2MW wind turbines, moored by eight mooring lines is selected as an example. The combination of irregular random waves, steady currents and dynamic turbulent winds are applied as environmental loads. As a result, the global motion and kinetic responses of the system are assessed in time domain. Kane’s dynamic theory is employed to formulate the global coupled dynamic equation of the whole system. The coupling terms are carefully considered to address the interactions among multiple turbines. This newly developed tool will be helpful in the future to evaluate the performance of MUFOWT under diverse environmental scenarios. In the present study, the aerodynamic interactions among multiple turbines including wake/array effect are not considered due to the complexity and uncertainty.


Author(s):  
Chinsu Mereena Joy ◽  
Anitha Joseph ◽  
Lalu Mangal

Demand for renewable energy sources is rapidly increasing since they are able to replace depleting fossil fuels and their capacity to act as a carbon neutral energy source. A substantial amount of such clean, renewable and reliable energy potential exists in offshore winds. The major engineering challenge in establishing an offshore wind energy facility is the design of a reliable and financially viable offshore support for the wind turbine tower. An economically feasible support for an offshore wind turbine is a compliant platform since it moves with wave forces and offer less resistance to them. Amongst the several compliant type offshore structures, articulated type is an innovative one. It is flexibly linked to the seafloor and can move along with the waves and restoring is achieved by large buoyancy force. This study focuses on the experimental investigations on the dynamic response of a three-legged articulated structure supporting a 5MW wind turbine. The experimental investigations are done on a 1: 60 scaled model in a 4m wide wave flume at the Department of Ocean Engineering, Indian Institute of Technology, Madras. The tests were conducted for regular waves of various wave periods and wave heights and for various orientations of the platform. The dynamic responses are presented in the form of Response Amplitude Operators (RAO). The study results revealed that the proposed articulated structure is technically feasible in supporting an offshore wind turbine because the natural frequencies are away from ocean wave frequencies and the RAOs obtained are relatively small.


Author(s):  
Tomoaki Utsunomiya ◽  
Shigeo Yoshida ◽  
Soichiro Kiyoki ◽  
Iku Sato ◽  
Shigesuke Ishida

In this paper, dynamic response of a Floating Offshore Wind Turbine (FOWT) with spar-type floating foundation at power generation is presented. The FOWT mounts a 100kW wind turbine of down-wind type, with the rotor’s diameter of 22m and a hub-height of 23.3m. The floating foundation consists of PC-steel hybrid spar. The upper part is made of steel whereas the lower part made of prestressed concrete segments. The FOWT was installed at the site about 1km offshore from Kabashima Island, Goto city, Nagasaki prefecture on June 11th, 2012. Since then, the field measurement had been made until its removal in June 2013. In this paper, the dynamic behavior during the power generation is presented, where the comparison with the numerical simulation by aero-hydro-servo-mooring dynamics coupled program is made.


2021 ◽  
Vol 11 (24) ◽  
pp. 11665
Author(s):  
Shi Liu ◽  
Yi Yang ◽  
Chao Wang ◽  
Yuangang Tu

Spar-type floating offshore wind turbines commonly vibrate excessively when under the coupling impact of wind and wave. The wind turbine vibration can be controlled by developing its mooring system. Thus, this study proposes a novel mooring system for the spar-type floating offshore wind turbine. The proposed mooring system has six mooring lines, which are divided into three groups, with two mooring lines in the same group being connected to the same fairlead. Subsequently, the effects of the included angle between the two mooring lines on the mooring-system’s performance are investigated. Then, these six mooring lines are connected to six independent fairleads for comparison. FAST is utilized to calculate wind turbine dynamic response. Wind turbine surge, pitch, and yaw movements are presented and analyzed in time and frequency domains to quantitatively evaluate the performances of the proposed mooring systems. Compared with the mooring system with six fairleads, the mooring system with three fairleads performed better. When the included angle was 40°, surge, pitch, and yaw movement amplitudes of the wind turbine reduced by 39.51%, 6.8%, and 12.34%, respectively, when under regular waves; they reduced by 56.08%, 25.00%, and 47.5%, respectively, when under irregular waves. Thus, the mooring system with three fairleads and 40° included angle is recommended.


Sign in / Sign up

Export Citation Format

Share Document