The Design and Construction of the Lime Soil Cushion in Loess Regions

2012 ◽  
Vol 170-173 ◽  
pp. 339-342
Author(s):  
Yun Bo Xu ◽  
Jing Li

The upper soil layer is weakness and not as a natural foundation. The middle soil layer is collapsible loess, the lower soil layer is good but buried deeply. After discussion, the ground treatment method using the lime soil cushion. This paper calculated the bearing capacity of the lime soil cushion, and designed the thickness and width. And checked the bearing capacity of the weak underlying layer, and discussed its construction and testing measures.

2014 ◽  
Vol 1049-1050 ◽  
pp. 256-259 ◽  
Author(s):  
Pei Chen ◽  
Qiang Cui

When the bearing capacity of natural foundation cannot meet load requirements, generally the ground treatment usually can be taken to strengthen it. In this paper, from the practical engineering, the design, construction, and detection of the lime soil pile were introduced. The results show that the lime soil pile in collapsible loess area reinforcement technology foundation is feasible. The bearing capacity and stability of the treated foundation can meet the requirements.


Author(s):  
Me ti ◽  
Tri Harianto ◽  
Abdul Rachman Djamaluddin ◽  
Achmad Bakri Muhiddin

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jianlei Liu ◽  
Meng Ma ◽  
Flavio Stochino

The bearing capacity evaluation of bridge substructures is difficult as the static loading test (SLT) cannot be employed for the bridges in services. As a type of dynamic nondestructive test technique, the dynamic transient response method (TRM) could be employed to estimate the vertical bearing capacity when the relationship between static stiffness and dynamic stiffness is known. The TRM is usually employed to evaluate single piles. For the pier-cap-pile system, its applicability should be investigated. In the present study, a novel full-scale experimental study, including both TRM test and SLT, was performed on an abandoned bridge pier with grouped pile foundation. The test included three steps: firstly, testing the intact pier-cap-pile system; then, cutting off the pier and testing the cap-pile system; finally, cutting off the cap and testing the single pile. The TRM test was repeatedly performed in the above three steps, whereas the SLT was only performed on the cap-pile system. Based on the experimental results, the ratio of dynamic and static stiffness of the cap-pile system was obtained. The results show that (1) in the low-frequency range (between 10 and 30 Hz in this study), the dynamic stiffness of the whole system is approximately four times of that of a single pile; (2) the ratio of dynamic and static stiffness of the cap-pile system tested in the study is approximately 1.74, which was similar to other tested values of a single pile; (3) to evaluate the capacity of similar cap-pile system and with similar soil layer conditions by TRM, the value of Kd/Ks tested in the study can be used as a reference.


Author(s):  
Wen Gao ◽  
Tom Harrup ◽  
Yuxia Hu ◽  
David White

The rapid penetration of one or more of the foundations of a mobile jack-up rig into the seabed is an ongoing major problem in the offshore industry, with the potential to cause major damage to the structure and endangering any personnel on board. A recent example is the jack-up drilling rig Perro Negro 6 incident happened near the mouth of the Congo river in July 2013 with one of the rig’s crew of 103 reported missing and six others injured. This uncontrollable displacement is due to a form of failure known as punch through failure and commonly occurs on stratified seabed profiles. It has been reported that unexpected punch-through accidents have resulted in both rig damage and lost drilling time at a rate of 1 incident per annum with consequential costs estimated at between US$1 and US$10 million [1]. This paper presents the bearing capacity profiles and associated soil flow mechanisms of a common spudcan foundation penetrating into a three layer soft-stiff-soft clay soil through the use of large deformation finite element (LDFE) analysis. The Remeshing and Interpolation with Small Strain (RITSS) [2, 3] technique was implemented in the software package AFENA [4] to conduct the LDFE analysis. Both soil layer thickness and soil layer strength ratios were varied to study their effect on the spudcan penetration responses. The LDFE results of spudcan penetration into the soft-stiff-soft clay soils were calibrated by existing centrifuge test data. A parametric study was then conducted to study the bearing capacity responses and soil flow mechanisms during spudcan large penetrations by varying the soil layer strength ratio and relative layer thickness to the diameter of spudcan. It was found that there were three types of bearing responses during continuous penetration of spudcan: (a) when the top soft layer is relatively thin, the spudcan bearing response was similar to that of two layer soils with stiff over soft clays; (b) when the top soil layer thickness is medium, a peak resistance is observed when spudcan penetrates into the middle stiff layer followed by reduction; (c) when the soil layer is thick, the peak resistance occurs when spudcan gets into the bottom soft soil layer. The critical thickness of top soil layer is a function of soil strength ratio and middle stiff soil layer thickness. The bearing response types were also corresponding to the soil cavity formations during spudcan initial penetration.


2012 ◽  
Vol 446-449 ◽  
pp. 1182-1185
Author(s):  
Wen Liang Qiu ◽  
Cai Liang Huang ◽  
Zhao Yi Chen

Because the multi-box girder bridge has many advantages, such as large torsion rigidity, large load-bearing capacity, stability, fine appearance, good applicability and convenient construction, it is widely used in China. But for the defection existing in design and construction, many box girders have serious diseases. Aiming at the diseases of a viaduct bridge, the causes of diseases are analyzed and the enforcement method is proposed in this paper. The study shows that, though the box girders have large torsion rigidity, the diaphragms are designed necessarily to enhance the transversal connection between the box girders, to make them bear the loads together, to reduce their stresses and deformation, and to reduce the stresses of deck too.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yongtao Zhang ◽  
Yuqing Liu ◽  
Huiwu Luo ◽  
Peishuai Chen ◽  
Dejie Li ◽  
...  

AbstractIn engineering practice, the measured bearing capacity of a sand pile composite foundation in a mucky soil layer is much larger than the design value. Based on the sand pile construction and the load application process, a method of calculating the bearing capacity of the foundation based on the effective stress was proposed. Cavity diameter expansion in sand pile construction was simplified into a planar problem, and the cavity expansion theory was used to establish the expression of the rate of displacement and the horizontal stress increase. Based on the e–p curve and the calculation of the degree of consolidation, the relationships between the horizontal and vertical effective stress and the void ratio were obtained. According to the close relationship between the bearing capacity of the foundation in a mucky soil layer and the water content, an expression describing the relationships between the bearing capacity of the foundation, effective stress, void ratio, and water content was established. For the temporary engineering foundation treatment project, which needs a high bearing capacity but allows large foundation deformation, the design of sand pile composite foundations uses these relationships to take the consolidation effect of mucky soil into consideration, thereby reducing the replacement rate and lowering the construction cost.


Author(s):  
Braja M. Das ◽  
Kim H. Khing ◽  
Eun C. Shin

The load-bearing capacity of a weak clay subgrade can be increased by placing a strong granular base course of limited thickness on top of the clay layer. The load-bearing capacity can be increased further, or the thickness of the granular base course can be reduced, by separating both layers by a geogrid. Laboratory model test results for the ultimate bearing capacity of a rigid strip loading on the surface of a granular soil underlain by a soft clay with a layer of geogrid at the interface of the two soils are presented. The optimum thickness of the granular soil layer and the critical width of the geogrid layer required to derive the maximum benefit from the reinforcement were determined. Model test results on the permanent settlement of the rigid strip load caused by cyclic loading of low frequency are presented.


2016 ◽  
Vol 845 ◽  
pp. 70-75
Author(s):  
Yusep Muslih Purwana ◽  
Niken Silmi Surjandari ◽  
Haryanto Wahyu

Jack-in piling is environmental friendly system enabling placement of the pile into soil layer with minimum disturbance. It works with very low noise, low vibration, allows piling in confined area, relatively very fast in term of installation rate, better quality control and very fast in mobility. The main issue regarding the pile is bearing capacity; the ability of the pile to withstand axial load without failure. This study attempts to find the correlation between jack-in force and ultimate pile bearing capacity. The result of 5 piling record on clayey layer soil indicates that there is a good correlation between jack-in force and empirical ultimate pile bearing capacity.


Sign in / Sign up

Export Citation Format

Share Document