Technique Development of Recycling and Utilizing Waste Concrete as Building Material

2012 ◽  
Vol 174-177 ◽  
pp. 275-279
Author(s):  
Da Xing Qian ◽  
Ying Wei Yun ◽  
Il Young Jang ◽  
Woo Young Park

In this paper shucking technique is developed to improve the performance of recycled coarse aggregate concrete. Comparison test has been done to demonstrate the good performance of shucking recycled coarse aggregate concrete than that of common recycled concrete. Simultaneously recycled fine aggregate concrete and recycled finely grinded admixture are extracted and studied too. Results show that this new technique can not only improve the performance of recycled material and enlarge recycled material type, but also make waste concrete to be reused completely.

2011 ◽  
Vol 261-263 ◽  
pp. 19-23 ◽  
Author(s):  
Da Xing Qian ◽  
Ying Wei Yun ◽  
Ii Young Jang ◽  
Jong Hoe Kim

Recently reutilization of waste concrete becomes one of the hottest issues in civil engineering field throughout the world. However, most of the concerned research focuses on the RCA (recycled coarse aggregate) by simply crushing waste concrete. In this paper shucking technique is developed to secondary process the simply crushing waste concrete for improving the performance of RCA concrete. Test has been done to demonstrate that performances such as strength, elastic modulus et al. of shucking RCA concrete is better than those of common recycled concrete. Simultaneously, beam specimens are made to test the flexural behavior of shucking RCA concrete. Results showed that the deflection of shucking RCA concrete beam is approximately same with that of natural coarse aggregate concrete beam, which solves current problem that recycled aggregate concrete beam has bigger deflection than common concrete beam. The new shucking technique developed in this paper has many advantages to be applied in practical engineering and it has obvious economic benefits and social effect.


2011 ◽  
Vol 368-373 ◽  
pp. 2185-2188
Author(s):  
Ping Hua Zhu ◽  
Xin Jie Wang ◽  
Jin Cai Feng

The properties of recycled coarsee aggregates from repeatedly recycling waste concrete were determined. In this study, five series of concrete mixtures using coarse and fine natural aggregates were prepared, which have the same objective slump value from 35mm to 50mm and different compressive strengths ranging from 25MPa to 60 MPa. These five concretes were crushed, sieved, washed with water, hot treatmented at 300°C before they were used as recycled aggregates. After that, recycled aggregate concrete (RAC) was produced with an objectively compressive strength of 30MPa, in which the recycled coarse aggregate was used as 30%, 70% and 90% replacements of natural coarse aggregate and recycled fine aggregate as 10%, 20%, and 30% replacements of natural fine aggregate. After that, these recycled concretes were used as second recycled aggregates to produce RAC with the same objectively compressive strength of 30MPa. The physical properties of coarse aggregates including apparent density, water absorption, attached mortar content and crushing value were tested and their mineral characteristics were analyzed. The results showed that the quality of recycled coarse aggregates from twicely recycling waste concrete reached the requirements from structural concrete.


2017 ◽  
Vol 898 ◽  
pp. 2046-2049 ◽  
Author(s):  
Gong Bing Yue ◽  
Qiu Yi Li ◽  
Jian Lin Luo ◽  
Yuan Xin Guo

Compared with natural aggregate, the content of hardening cement in recycled aggregate is larger, which leads that the water absorption of recycled aggregate is larger and its performance such as robustness is poorer. And the engineering field pays much attention to the problem of the recycled fine aggregate which can be used in the durability requirements of recycled concrete or not. Using the method of fast freezing and thawing the influence of quality and replacement ratio of recycled coarse aggregate on the frost resistance of recycled concrete was researched basing on ordinary concrete frost resistance performance. The results showed that, in terms of the frost resistance capacity, the order is in: ordinary concrete>high-quality recycled coarse aggregate concrete>normal quality recycled coarse aggregate concrete. After 250 freeze-thaw cycles, the mass loss rate of general quality recycled coarse aggregate concrete is 5%, relative dynamic elastic modulus is 60% when replace rate was 100%.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Hui Cao ◽  
Lifeng Zhao ◽  
Chenggong Lu ◽  
Lijuan Guan ◽  
Hongxia Qiao ◽  
...  

Resistance to sulfate degradation is an important index used to measure concrete’s durability. In this study, recycled aggregate concrete (RAC) with a 0%, 30%, and 50% recycled coarse aggregate substitution rate and a 0% and 15% recycled fine aggregate replacement rate was used as the research object, and its degradation resistance was evaluated by the mass loss rate and the relative dynamic modulus of elasticity. The degradation products were studied and analyzed with SEM scanning electron microscopy and XRD phase analysis. The relative dynamic modulus of elasticity was selected as the degradation index, the RAC concrete’s degradation resistance was modeled by Wiener, and the reliability curve was obtained. The results showed that expansion products, such as gypsum and Ettringite, were produced in RAC concrete in a dry-wet sulfate cycling environment, and such defects as pores and voids were filled in the initial stage. The stress the expansion products exerted in the later stage caused the concrete to crack and peel, which demonstrated that the fluctuation law of mass and the dynamic elastic modulus increased first and then decreased. The recycled coarse aggregate substitution ratio’s effect on RAC concrete is higher than that of recycled fine aggregate. The reliability curve established by the Wiener model can reflect the reliability of RAC concrete under different cycles well and can obtain RAC concrete’s sulfate degradation resistance life with different aggregate substitution rates.


2014 ◽  
Vol 584-586 ◽  
pp. 1456-1460
Author(s):  
Chun Hong Chen ◽  
Ping Hua Zhu ◽  
Jun Yong Wu ◽  
Lei Yi

The influence of recycled aggregates on the frost resistance of concrete was studied by rapid freezing-thawing test. Results showed that there was an important effect of aggregate gradation on frost resistance of recycled coarse aggregate concrete. Frost resistance of recycled fine aggregate concrete was deteriorated with increasing the content of recycled fine aggregate, and recycled fine aggregate had a greater influence on the frost resistance of recycled aggregate concrete than recycled coarse aggregate when adding both together. Test showed that the mass loss rate and the relative dynamic elastic modulus loss are not consistent as evaluation indexes of the frost resistance for recycled concrete, and whether the mass loss rate is suitable as an indicator of frost resistance durability needs to be further studied.


2020 ◽  
Vol 184 ◽  
pp. 01085
Author(s):  
Dr.V. Mallikarjuna Reddy ◽  
M. Manikanta Sai Swaroop

This study is taken up to utilise the recycled coarse aggregate and recycled fine aggregate as replacement of natural aggregate in concrete mix. It is required to find the percentage of recycled coarse aggragate and recycled fine aggregate, as the strength of concrete can not be achieved by using higher percentaged. The purpose of study is to compare between recycled coarse aggregate and recycled fine aggregate with natural coarse aggregate and sand in terms of specific gravity, water absorption, particle size distribution. Further, this stydy will also consider the difference between the performance of Recycled Aggregate Concrete for different percentages of recycled coarse aggregate and recycled fine aggregate i.e for 0%, 10%, 15%, 20%, 25%, 30%, 35% replacement. The present study is an experimental investigation on the behaviour of recycled aggregate concrete (coarse& fine aggregates) with respect to the strength and performance.


2020 ◽  
Vol 12 (24) ◽  
pp. 10544
Author(s):  
Chunhong Chen ◽  
Ronggui Liu ◽  
Pinghua Zhu ◽  
Hui Liu ◽  
Xinjie Wang

Carbonation durability is an important subject for recycled coarse aggregate concrete (RAC) applied to structural concrete. Extensive studies were carried out on the carbonation resistance of RAC under general environmental conditions, but limited researches investigated carbonation resistance when exposed to chloride ion corrosion, which is an essential aspect for reinforced concrete materials to be adopted in real-world applications. This paper presents a study on the carbonation durability of two generations of 100% RAC with the effect of chloride ion corrosion. The quality evolution of recycled concrete coarse aggregate (RCA) with the increasing recycling cycles was analyzed, and carbonation depth, compressive strength and the porosity of RAC were measured before and after chloride ion corrosion. The results show that the effect of chloride ion corrosion negatively affected the carbonation resistance of RAC, and the negative effect was more severe with the increasing recycling cycles of RCA. Chloride ion corrosion led to a decrease in compressive strength, while an increase in carbonation depth and the porosity of RAC. The equation of concrete total porosity and carbonation depth was established, which could effectively judge the deterioration of carbonation resistance of RAC.


2009 ◽  
Vol 620-622 ◽  
pp. 255-258 ◽  
Author(s):  
Cheol Woo Park

As the amount of waste concrete has been increased and recycling technique advances, this study investigates the applicability of recycled concrete aggregate for concrete structures. In addition fly ash, the industrial by-product, was considered in the concrete mix. Experimental program performed compressive strength and chloride penetration resistance tests with various replacement levels of fine recycled concrete aggregate and fly ash. In most case, the design strength, 40MPa, was obtained. It was known that the replacement of the fine aggregate with fine RCA may have greater influence on the strength development rather than the addition of fly ash. It is recommended that when complete coarse aggregate is replaced with RCA the fine RCA replacement should be less than 60%. The recycled aggregate concrete can achieve sufficient resistance to the chloride ion penetration and the resistance can be more effectively controlled by adding fly ash. It I finally conclude that the recycled concrete aggregate can be successfully used in the construction field and the recycling rate of waste concrete and flay ash should be increased without causing significant engineering problems.


2012 ◽  
Vol 166-169 ◽  
pp. 1614-1619 ◽  
Author(s):  
Wen Yue Qin ◽  
Yu Liang Chen ◽  
Zong Ping Chen

In order to reveal the flexural behavior of normal section of steel reinforced recycled coarse aggregate concrete beams,6 steel reinforced recycled concrete beams were designed for flexural test,the study mainly considered the impact of coarse aggregate replacement rates and concrete strength grade two changing parameters on the flexural behavior of steel reinforced recycled coarse aggregate concrete beams. Through this test, the whole mechanical process、crack distribution and failure behavior of this kind of specimens were observed, and obtained the stress-strain distribution curves、the ultimate bearing capacity and load-displacement curves parameters. Based on the study measurement data, deeply analyzed the impact of coarse aggregate replacement rates and concrete strength grade on the flexural behavior of steel reinforced recycled coarse aggregate concrete beams. The result shows that: steel reinforced recycled coarse aggregate concrete beams’ failure pattern was similar to normal SRC beams, during loading process the section strain agreed with the plane-section assumption, and the beams have good bearing capacity and deformation performance.


2012 ◽  
Vol 253-255 ◽  
pp. 432-435
Author(s):  
Jiu Su Li ◽  
Chun Li Qin

Fine aggregate can be extracted from waste concrete by series of processing. The recycled fine aggregate can then be utilized to manufacture recycled fine aggregate mortar (RFAM) or recycled fine aggregate concrete (RFAC). Air entraining agent was added in RFAM to improve its mechanical performance. The influence of the dosage of the air entraining agent on both the compressive and flexural strength of the RFAM was explored after 7 days and 28 days curing. The optimum dosage of the air entraining agent was determined.


Sign in / Sign up

Export Citation Format

Share Document