The Possible Mechanisms of Cadmium Accumulation in Tagetes erecta L. under Macronutrient Deficiency

2012 ◽  
Vol 178-181 ◽  
pp. 1060-1064
Author(s):  
Qian Feng ◽  
Pei Dong Tai ◽  
Sha Sha Fu ◽  
Pei Jun Li ◽  
Yin Qiu Zhang

An experiment was conducted under hydroponic culture conditions to determine effects of nutrient deficiencies on cadmium (Cd) accumulation of Tagetes erecta L. and its possible mechanisms. Seedlings of similar size were pre-cultured in either N- or P- deprived nutrient solution for 7 days before exposure to 0.1 mg Cd L-1. The control plants had normal nutrient supply before and during Cd exposure. The plants were harveste after 7 days exposure to Cd. In N-deprived plants, Cd levels in roots, stems and roots were significantly reduced, which was consistent with a decrease of phytochelatins (PCs) in roots. Cd accumulation was the lowest in N-deficient plants, corresponding to substantial decreases in organic acids. In P-deprived plants, the obvious increase of Cd content in the root and stem and decrease of Cd content in the leaf accorded with increases of citric acid in the root and malic acid in the stem, supporting the suggestion that organic acids sequester soluble Cd and reduce Cd transport into the leaf.

2010 ◽  
Vol 113-116 ◽  
pp. 211-217
Author(s):  
Yin Qiu Zhang ◽  
Pei Dong Tai ◽  
Pei Jun Li ◽  
Qing Zhao ◽  
Dian Bo Dong

Hydroponic experiments were carried out to study the effects of cell division inhibitor (Maleic hydrazide MH) and protein synthesis inhibitor(Cycloheximide CHI)on Cd accumulation in Tagetes erecta L and their possible mechanisms. Seedlings were exposed to 4 mmol L-1 MH or 3 µmol L-1 CHI in 0.1 mg L-1 Cd-containing solution for 3 days. After treatment, the Cd content in leaves was significantly (P<0.05) reduced under MH or CHI treatment, which was consistent with the decreased soluble protein contents in leaves, suggesting that protein synthesis plays a role in Cd accumulation in leaves of Tagetes erecta L. Both of the plant growth inhibitors led to increased Cd contents in roots compared with the control, corresponding with increased GSH, Cys or γEC content under MH or CHI treatment, indicating that those S-containing compounds may be related to the increased Cd content in roots under the plant growth inhibitor treatments. On the other hand, the two inhibitors increased the citric acid content in all the tissues of Tagetes erecta L except for that in leaves under CHI treatment. All the results suggest that protein synthesis may be responsible for Cd accumulation in leaves of Tagetes erecta L, while the S-containing compounds and organic acids are associated with Cd absorption in roots of Tagetes erecta L.


2011 ◽  
Vol 71-78 ◽  
pp. 149-155
Author(s):  
Sha Sha Fu ◽  
Xin Fa Xu ◽  
Rong Fang Li ◽  
Pei Dong Tai

A hydroponic culture experiment was conducted to study the effect of temperature and nutrient level on Cd accumulation inTagetes erectaL.. In the first experiment, shoot Cd accumulation and transpiration rate at different temperature was determined. Cd accumulation was lower with higher transpiration rate at 35°C than that of 25°C or 15°C with lower transpiration rate. In the other experiment, cadmium accumulation of plants varies significantly under the condition of different nutrient supplication. Contents of Cd in roots were not high, but the contents of Cd in shoots were the highest when plants were cultivated in 0.05-fold Hoagland’s solution. Roots Cd accumulation decreased as the concentration of single nutrient element (N, P, S) decrease or absence, and shoots Cd accumulation decrease in the condition of sulfur deficiency and sulfur absence. It was shown that transpiration is not the primary factor affecting Cd accumulation inTagetes erectaL, but growth rate of plants has certain correlation with Cd accumulation; contents of Cd in roots are most affected by the supplication of nutrient elements, yet shoots accumulation is relatively lagging behind; different nutrient element has some different effect on Cd accumulation, and the effects of nitrogen and sulfur on the shoots Cd accumulation are the greatest.


2022 ◽  
Author(s):  
Flávio Henrique Silveira Rabêlo ◽  
Felipe dos Santos ◽  
José Lavres ◽  
Luís Alleoni

Abstract Although several grasses have been evaluated for cadmium (Cd) phytoextraction, there are no studies assessing how Cd is accumulated and distributed in the tissues of Panicum maximum grown in mildly polluted soils. The evaluation of tillering, nutritional status and biomass yield of this grass, mainly along successive shoot regrowths, is not well studied so far. Thus, P. maximum Jacq. cv. Massai was grown for two periods in an Oxisol presenting bioavailable Cd concentrations varying from 0.04 (control) to 10.91 mg kg−1 soil. Biomass yield of leaves and stems´ growth have decreased under the highest Cd exposure, but it did not occur in the regrowth period, indicating that Cd-induced toxicity is stronger in the early stages of development of P. maximum. The tillering was not compromised even the basal node presenting Cd concentrations higher than 100 mg kg−1 DW. We identified a restriction on Cd transport upwards from basal node, which was the main local of Cd accumulation. Apparently, P, K, Mg, S and Cu are involved in processes that restrict Cd translocation and confer high tolerance to Cd in P. maximum. The Cd-induced nutritional disorders did not negatively correlate with factors used to calculate phytoextraction efficiency. However, the nutritional adjustments of P. maximum to cope with Cd stress restricted the upward Cd transport, which decreased the phytoextraction efficiency from the available Cd concentration of 5.93 mg kg−1 soil.


2020 ◽  
Vol 61 (9) ◽  
pp. 1614-1630
Author(s):  
Wenguang Shi ◽  
Wenzhe Liu ◽  
Chaofeng Ma ◽  
Yuhong Zhang ◽  
Shen Ding ◽  
...  

Abstract The process of cadmium (Cd) accumulation and detoxification under different sulfur levels remains largely unknown in woody plants. To investigate the physiological and transcriptomic regulation mechanisms of poplars in response to different sulfate (S) supply levels and Cd exposure, we exposed Populus deltoides saplings to one of the low, moderate and high S levels together with either 0 or 50 µM Cd. Cd accumulation was decreased in low S-treated poplar leaves, and it tended to be increased in high S-supplied leaves under the Cd exposure condition. Sulfur nutrition was deficient in low S-supplied poplars, and it was improved in high S-treated leaves. Cd exposure resulted in lower sulfur level in the leaves supplied with moderate S, it exacerbated a Cd-induced sulfur decrease in low S-treated leaves and it caused a higher sulfur concentration in high S-supplied leaves. In line with the physiological changes, a number of mRNAs and microRNAs (miRNAs) involved in Cd accumulation and sulfur assimilation were identified and the miRNA–mRNA networks were dissected. In the networks, miR395 and miR399 members were identified as hub miRNAs and their targets were ATP sulfurylase 3 (ATPS3) and phosphate 2 (PHO2), respectively. These results suggest that Cd accumulation and sulfur assimilation are constrained by low and enhanced by high S supply, and Cd toxicity is aggravated by low and relieved by high S in poplar leaves, and that miRNA–mRNA regulatory networks play pivotal roles in sulfur-mediated Cd accumulation and detoxification in Cd-exposed poplars.


2020 ◽  
Author(s):  
Ronald Nersada Eryono Aulu

Sebagian besar tanaman herba dalam keluarga bunga matahari. Tanaman ini digambarkan sebagai genus oleh Carl Linnaeus pada tahun 1753. Genus berasal dari Amerika Utara dan Amerika Selatan. Diterjemahkan dalam bahasa Inggris disebut big Marigold, bahasa latin Tagetes Erecta L adalah genus tahunan dan abadi, Bunga tahi ayam sering disebut sebagai kenikir, randa kencana dan ades (Indonesia), tahi kotok (Sunda), amarello (Filipina), African Marigold, Astec Marigold, American Marigold, Big Marigold (Inggris).Tagetes Erecta L, termasuk ke dalam keluarga Compositae (Asteraceae) dan mempunyai 59 species.


2021 ◽  
Vol 11 (9) ◽  
pp. 3761
Author(s):  
Wen-Lii Huang ◽  
Wei-Hsiang Chang ◽  
Shu-Fen Cheng ◽  
Huai-Yuan Li ◽  
Hsiu-Ling Chen

Once in soil and water, metals can enter the food chain, and the consumption of contaminated crops can pose a serious risk to human health. This study used pot experiments to evaluate the accumulation of metal elements and their influence on levels of antioxidants in vegetables. The current study clearly demonstrates that metals accumulated in the five vegetables that were planted in the contaminated soils, especially so for water spinach. Cd accumulation of all of the vegetables planted in the contaminated soils was greater Cu. The low accumulation rate that was seen in sweet potato leaf, potato, and tomato indicated their suitability for planting in suspected contaminated soil, such as at farms nearby metal industries, in replacement of high accumulators, such as leafy vegetables. The non-carcinogenic HI of Cd exposure from water spinach and sweet potato were >1, whereas those for Cu were <1. This study suggests that residents may experience health risks due to vegetable consumption, and that children are vulnerable to the adverse effects of heavy metal ingestion.


Sign in / Sign up

Export Citation Format

Share Document