Studies on the Mechanism of Cadmium Accumulation in Tagetes erecta L

2010 ◽  
Vol 113-116 ◽  
pp. 211-217
Author(s):  
Yin Qiu Zhang ◽  
Pei Dong Tai ◽  
Pei Jun Li ◽  
Qing Zhao ◽  
Dian Bo Dong

Hydroponic experiments were carried out to study the effects of cell division inhibitor (Maleic hydrazide MH) and protein synthesis inhibitor(Cycloheximide CHI)on Cd accumulation in Tagetes erecta L and their possible mechanisms. Seedlings were exposed to 4 mmol L-1 MH or 3 µmol L-1 CHI in 0.1 mg L-1 Cd-containing solution for 3 days. After treatment, the Cd content in leaves was significantly (P<0.05) reduced under MH or CHI treatment, which was consistent with the decreased soluble protein contents in leaves, suggesting that protein synthesis plays a role in Cd accumulation in leaves of Tagetes erecta L. Both of the plant growth inhibitors led to increased Cd contents in roots compared with the control, corresponding with increased GSH, Cys or γEC content under MH or CHI treatment, indicating that those S-containing compounds may be related to the increased Cd content in roots under the plant growth inhibitor treatments. On the other hand, the two inhibitors increased the citric acid content in all the tissues of Tagetes erecta L except for that in leaves under CHI treatment. All the results suggest that protein synthesis may be responsible for Cd accumulation in leaves of Tagetes erecta L, while the S-containing compounds and organic acids are associated with Cd absorption in roots of Tagetes erecta L.

2012 ◽  
Vol 178-181 ◽  
pp. 1060-1064
Author(s):  
Qian Feng ◽  
Pei Dong Tai ◽  
Sha Sha Fu ◽  
Pei Jun Li ◽  
Yin Qiu Zhang

An experiment was conducted under hydroponic culture conditions to determine effects of nutrient deficiencies on cadmium (Cd) accumulation of Tagetes erecta L. and its possible mechanisms. Seedlings of similar size were pre-cultured in either N- or P- deprived nutrient solution for 7 days before exposure to 0.1 mg Cd L-1. The control plants had normal nutrient supply before and during Cd exposure. The plants were harveste after 7 days exposure to Cd. In N-deprived plants, Cd levels in roots, stems and roots were significantly reduced, which was consistent with a decrease of phytochelatins (PCs) in roots. Cd accumulation was the lowest in N-deficient plants, corresponding to substantial decreases in organic acids. In P-deprived plants, the obvious increase of Cd content in the root and stem and decrease of Cd content in the leaf accorded with increases of citric acid in the root and malic acid in the stem, supporting the suggestion that organic acids sequester soluble Cd and reduce Cd transport into the leaf.


2006 ◽  
Vol 23 (2) ◽  
pp. 43-46
Author(s):  
Kiyotaka Matsumura ◽  
Manami Nagano ◽  
Sachiko Tsukamoto ◽  
Haruko Kato ◽  
Nobuhiro Fusetani

Development ◽  
2021 ◽  
Vol 148 (10) ◽  
Author(s):  
Jun Yu ◽  
Marilyn Janice Oentaryo ◽  
Chi Wai Lee

ABSTRACT Upon the stimulation of extracellular cues, a significant number of proteins are synthesized distally along the axon. Although local protein synthesis is crucial for various stages throughout neuronal development, its involvement in presynaptic differentiation at developing neuromuscular junctions remains unknown. By using axon severing and microfluidic chamber assays, we first showed that treatment of a protein synthesis inhibitor, cycloheximide, inhibits agrin-induced presynaptic differentiation in cultured Xenopus spinal neurons. Newly synthesized proteins are prominently detected, as revealed by the staining of click-reactive cell-permeable puromycin analog O-propargyl-puromycin, at agrin bead-neurite contacts involving the mTOR/4E-BP1 pathway. Next, live-cell time-lapse imaging demonstrated the local capturing and immobilization of ribonucleoprotein granules upon agrin bead stimulation. Given that our recent study reported the roles of membrane-type 1 matrix metalloproteinase (MT1-MMP) in agrin-induced presynaptic differentiation, here we further showed that MT1-MMP mRNA is spatially enriched and locally translated at sites induced by agrin beads. Taken together, this study reveals an essential role for axonal MT1-MMP translation, on top of the well-recognized long-range transport of MT1-MMP proteins synthesized from neuronal cell bodies, in mediating agrin-induced presynaptic differentiation.


1980 ◽  
Vol 85 (1) ◽  
pp. 33-42
Author(s):  
J. W. Jacklet

1.The circadian rhythm of compound action potential frequency recorded from the isolated eye of Aplysia in culture medium and darkness was subjected to 6 h pulse treatments with either anisomycin, a protein synthesis inhibitor, or inactive derivatives of anisomycin. 2. Anisomycin caused phase-dependent phase shifts of the rhythm as expected from previous experiments, but none of the derivative molecules caused phase shifts or perturbed the rhythm. 3. Anisomycin inhibited eye-protein synthesis by 75% at the concentrations (10(−6) M) used in the phase shifting experiments but none of the derivatives inhibited synthesis. 4. Only those molecules that actually inhibited protein synthesis caused phase shifts of the clock, although the inactive derivatives differed from anisomycin by only an acetyl group. 5. The results strengthen the conclusion that the inhibition of protein synthesis caused by anisomycin is important in perturbing the timing of the circadian clock and not some other characteristic effect of the inhibitor molecule. Together with the results from other systems, these findings imply that the daily synthesis of protein is a general requirement for circadian clocks.


Sign in / Sign up

Export Citation Format

Share Document