Hot Workability Analysis of Extruded Mg-Zn-Mn-Y Magnesium Alloys with Different Phases

2012 ◽  
Vol 184-185 ◽  
pp. 1010-1016
Author(s):  
Wei Wei He ◽  
Kun Zhang ◽  
Min Huang ◽  
Sheng Long Dai

Workability, an important parameter in magnesium alloys forming process, can be evaluated by means of processing maps on the basis of dynamic materials model, constructed from experimentally generated flow stress variation with respect to strain, strain rate and temperature. To obtain the processing maps of extruded Mg-Zn-Mn-Y magnesium alloy with different secondary phases (I-phase and W-phase), hot compression tests were performed over a range of temperatures 523–673 K and strain rates 0.001~10s-1. The response of strain-rate sensitivity (m-value), power dissipation efficiency (ζ-value) and instability parameter (n-value) to temperature and strain rate were evaluated. By the superimposition of the power dissipation and the instability maps, the dynamic recrystallization (DRX) and instability zones were identified and validated through micrographs. The observations were performed in order to describe the behavior of the material under hot forming operation in terms of material damage and micro-structural modification.

2011 ◽  
Vol 399-401 ◽  
pp. 1870-1877
Author(s):  
Gao Sheng Fu ◽  
Wen Duan Yan ◽  
Hong Ling Chen ◽  
Gui Qing Chen ◽  
Chao Zeng Cheng

Based on the theory of processing map proposed by PRASAD, the power dissipation maps, the hot deformation instability maps and the hot processing maps of 1235 Al alloys treated by different methods of purification were built, and the effects of purification and deformation conditions at elevated-temperature on hot workability of 1235 Al alloy were analyzed. At the same time the optimum processing region and flow instability region were determined. The results show that the hot processing map of 1235 Al alloy has two instability zones in the temperature range of 300-500°C and in the strain rate ranging from 0.01s-1to 10.0s-1up to a true strain of 0.7, that is, one zone lying in the range of lower temperature and higher strain rate, the other zone in the range of higher temperature and mid strain rate. The purification effect has significant impact on hot workability of the alloy. It is found that the optimum processing region of 1235 Al alloy treated by high-efficient purification treatment is present in the range of higher temperature and lower strain rate zone, and its power dissipation efficiency is about 46%; while the optimum processing region of 1235 Al alloys treated by conventional refining treatment is present in the range of mid-temperature and lower strain rate zone or in the range of higher temperature and strain rate zone, and its power dissipation efficiency is about 23-29%. The results of observation of the deformation microstructure of 1235 Al alloy are in accordance with that of the hot processing maps of the alloy, thus showing that the calculation results of the hot processing maps are reliable.


2017 ◽  
Vol 62 (1) ◽  
pp. 59-65
Author(s):  
A. Łukaszek-Sołek ◽  
A. Świątoniowski ◽  
K. Celadyn ◽  
J. Sińczak

Abstract In this paper, the results of investigations into, and of the analyses of, the hot deformation behaviour of the Ni50Cr45N0.6 alloy were presented. Compression tests were conducted on a Gleeble 3800 thermo-mechanical simulator within the following temperatures range 850-1200°C and within that of the strain rate 1-40 s-1 to the constant true strain of 0.9, for the purpose of fulfilling the objective of obtaining experimental stress date. Those data were taken advantage of for the purpose of calculating the workability parameters, and that means the efficiency of power dissipation η, the flow instability ξ and the strain rate sensitivity m. The processing maps based upon Murty’s criterion were drawn up for the following true strain range: 0.2-0.9, and, subsequently, both processing windows and the flow instability areas were determined. For the alloy being analysed, the most advantageous conditions of metal forming were ascertained within the following range of temperatures: 950-1000°C, and for that of the strain rate amounting to 10-40 s-1, and that because of (occurring at the temperature of 950°C) the peak of the efficiency of power dissipation parameter η, amounting to 22% (in accordance with Murty’s criterion). The flow instability areas identified on the processing maps ought to be avoided in metal forming processes. Experimental rolling tests were also conducted.


2009 ◽  
Vol 79-82 ◽  
pp. 1439-1442
Author(s):  
Song Xiang ◽  
Guo Quan Liu

The hot deformation behavior of Nb-V-Ti microalloyed steel in the temperature range of 850°C~1100°C and the strain rate range of 0.001s-1~30s-1 was investigated by establishing the processing maps. The strain rate sensitivity (m), power dissipation efficiency (η) and instability parameter were calculated based on the experimental compression data and are plotted in the temperature–strain rate plane to obtain power dissipation and instability maps. The processing maps exhibit that the deformation at 1000°C and 2s-1 is one peak efficiency of power dissipation of 21%, the deformation at 1050°C and 0.01~0.001 s-1 is another peak efficiency of power dissipation of 45%. The optical microstructure observations show that they represent two dynamic recrystallization domains. Based on the above processing maps, the hot working parameters were optimized.


2013 ◽  
Vol 712-715 ◽  
pp. 58-64
Author(s):  
Jing Qi Zhang ◽  
Hong Shuang Di ◽  
Xiao Yu Wang

In the present study, deformation heating generated by plastic deformation and its effect on the processing maps of Ti-15-3 titanium alloy were investigated. For this purpose, hot compression tests were performed on a Gleeble-3800 thermo-mechanical simulator in the temperature range of 850-1150 °C and strain rate range of 0.001-10 s1. The temperature rise due to deformation heating was calculated and the as-measured flow curves were corrected for deformation heating. Using the as-measured and corrected flow stress data, the processing maps for Ti-15-3 titanium alloy at a strain of 0.5 were developed on the basis Murty‘s and Babu’s instability criteria. The results show that both the instability maps based the two instability criteria are essentially similar and are characterized by an unstable region occurring at strain rates higher than 0.1 s1for almost the entire temperature range tested. The unstable regions are overestimated from the as-measured data due to the effect of deformation heating, indicating a better workability after correcting the effect of deformation heating. This is further conformed by the analysis based on strain rate sensitivity.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1045 ◽  
Author(s):  
Hui Li ◽  
Zhanglong Zhao ◽  
Yongquan Ning ◽  
Hongzhen Guo ◽  
Zekun Yao

The effects of initial lamellar thickness on microstructural evolution and deformation behaviors of a near-α Ti-5.4Al-3.7Sn-3.3Zr-0.5Mo-0.4Si alloy were investigated during isothermal compression in α + β phase field. Special attention was paid to microstructural conversion mechanisms for α lamellae with different initial thicknesses. The deformation behaviors, including flow stress, temperature sensitivity, and strain rate sensitivity, and processing maps and their dependence on initial lamellar thickness were discussed. The detailed microstructural characterizations in different domains of the developed processing maps were analyzed. The results showed that the peak efficiency of power dissipation decreased with increasing initial lamellar thickness. The interaction effects with different extents of globularization, elongating, kinking, and phase transformation of lamellar α accounted for the variation in power dissipation. The flow instability region appeared to expand more widely for thicker initial lamellar microstructures during high strain rate deformation due to flow localization and local lamellae kinking. The electron backscatter diffraction (EBSD) analyses revealed that the collaborative mechanism of continuous dynamic recrystallization (CDRX) and discontinuous dynamic recrystallization (DDRX) promoted the rapid globularization behavior for the thinnest acicular initial microstructure, whereas in case of the initial thick lamellar microstructure, CDRX leading to the fragmentation of lamellae was the dominant mechanism throughout the deformation process.


2012 ◽  
Vol 724 ◽  
pp. 178-181
Author(s):  
Woo Young Jung ◽  
Tae Kwon Ha

The hot deformation behavior of a high strength low alloy (HSLA) steel for construction application under hot working conditions in the temperature range of 900 to 1100 and strain rate range from 0.1 to 10 s-1 has been studied by performing a series of hot compression tests. The dynamic materials model has been employed for developing the processing maps, which show variation of the efficiency of power dissipation with temperature and strain rate. Also the Kumars model has been used for developing the instability map, which shows variation of the instability for plastic deformation with temperature and strain rate. The efficiency of power dissipation increased with decreasing strain rate and increasing temperature. High efficiency of power dissipation over 20 % was obtained at a finite strain level of 0.3 under the conditions of strain rate lower than 1 s-1 and temperature higher than 1050. Plastic instability was expected in the regime of temperatures lower than 1000°C and strain rate lower than 0.3 s-1.


2012 ◽  
Vol 490-495 ◽  
pp. 3423-3426 ◽  
Author(s):  
Xin Zhao ◽  
Hong Zhao ◽  
Rui Zhang

The hot deformation characteristics of TC18 titanium alloy were studied in the temperature range 750-850°C and strain rate range 0.001-1 s-1 by using hot compression tests. Processing maps for hot working are developed on the basis of the variations of efficiency of power dissipation with temperature and strain rate. The results reveal that the flow stress of TC18 is sensitive to strain rate. Processing map at stain of 0.6 reveals two domains: one is centered at 750°C and 0.001s-1; another is centered at 850°C and 0.001s-1. The maximum efficiency is more than 60%. According to the maps, the zone with the temperature range of 750-850°C and strain rate range of 0.01-0.001s-1 may be suitable for hot working


2021 ◽  
Author(s):  
Jiyu Li ◽  
Shuai Dong ◽  
Chaoyu Zhao ◽  
Jian Zeng ◽  
Li Jin ◽  
...  

Abstract The three-dimensional (3D) processing maps of cast Mg-9.0Gd-3.0Y-2.0Zn-0.5Zr alloy were established based on isothermal compression tests and dynamic material model (DMM). The stable and power efficient forming domains were determined by considering both the instability and power dissipation efficiency maps. Multi-directional forging (MDF) was then simulated by employing finite element (FE) analysis in the Deform-3D software, using the 3D power dissipation efficiency maps as input. The optimal forging parameters were thus obtained for a large-scale ingot with 430 mm in diameter and 440 mm in height, i.e. a forging temperature of 450 ℃ and forging speed of 10 mm/s. Finally, a Mg-9.0Gd-3.0Y-2.0Zn-0.5Zr cake-shaped forged part with 900 mm in diameter and 100 mm in height was produced. After T6-heat treatment, the edge and center of the forged part exhibit homogeneous microstructure and relatively consistent properties, with the tensile strength, yield strength and elongation being about 400 MPa, 320 MPa and 14.0% respectively. Using transmission electron microscopy, the main strengthening phases were revealed to be the dense nano-scale β' phases that are uniformly distributed inside the material.


2014 ◽  
Vol 926-930 ◽  
pp. 182-185
Author(s):  
Quan Li ◽  
Wen Jun Liu ◽  
Ren Ju Cheng ◽  
Shan Jiang ◽  
Su Qin Luo ◽  
...  

The deformation behavior of as-cast AZ61 alloy in the temperature range 300-450°C and in the strain rate range 0.01~5 s−1 has been studied using processing maps. For obtaining the processing map, the variation of the efficiency of power dissipation given by [2m/(m+1)] where ‘m’ is the strain rate sensitivity, is plotted as a function of temperature and strain rate. The map exhibited a domain of dynamic recrystallization (DRX) occurring at 425 °C and 0.1 s−1 which are the optimum parameters for hot working of the alloy.


2014 ◽  
Vol 904 ◽  
pp. 262-268 ◽  
Author(s):  
Yan Hui Yang ◽  
Dong Liu ◽  
Guo Jie Gao ◽  
Jian Guo Wang

Isothermal compression tests were conducted at various temperature and strain rate combinations over the hot working range (880 to 1040°C and 0.01 to 10.0 s-1) of TC11 alloy. Based on the experimental data, the strain rate sensitivity factors m were calculated. Both the efficiency of power dissipation and the instability parameter were computed, and then processing maps incorporated instability maps were accordingly established at strains of 0.1, 0.3 and 0.6. A method to optimize the forging process of Titanium alloy blisk was proposed based on the processing map. The optimized process of TC11 alloy blisk was achieved using the proposed method and was verified by numerical simulation and experiment. The results showed that this optimal process is applicable to produce blisk with duplex structures.


Sign in / Sign up

Export Citation Format

Share Document