Effects of Chemical Reaction and Soret Effect on Mixed Heat and Mass Transfer for Hiemenz flow through Porous Media with Heat Source

2012 ◽  
Vol 197 ◽  
pp. 712-716 ◽  
Author(s):  
S. Shateyi ◽  
S.S. Motsa

The effects of chemical reaction and thermal-diffusion mixed convection heat and mass transfer for Hiemenz flow through porous media has been studied. The plate is embedded in a uniform porous medium in order to allow for possible fluid wall suction or blowing and has a power-law variation of both the wall temperature and concentration. We used similarity solution to transform the system of partial differential equations, into a boundary value problem of coupled ordinary differential equations. We then solve these ordinary differential equations by a MATLAB routine bvp4c. We conducted a parametric study of all involved parameters and the results represented graphically.

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Reda G. Abdel-Rahman

An analysis is carried out to study the problem of heat and mass transfer flow over a moving permeable flat stretching sheet in the presence of convective boundary condition, slip, radiation, heat generation/absorption, and first-order chemical reaction. The viscosity of fluid is assumed to vary linearly with temperature. Also the diffusivity is assumed to vary linearly with concentration. The governing partial differential equations have been reduced to the coupled nonlinear ordinary differential equations by using Lie group point of transformations. The system of transformed nonlinear ordinary differential equations is solved numerically using shooting techniques with fourth-order Runge-Kutta integration scheme. Comparison between the existing literature and the present study was carried out and found to be in excellent agreement. The effects of the various interesting parameters on the flow, heat, and mass transfer are analyzed and discussed through graphs in detail. The values of the local Nusselt number, the local skin friction, and the local Sherwood number for different physical parameters are also tabulated.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
R. A. Mohamed ◽  
S. Z. Rida ◽  
A. A. M. Arafa ◽  
M. S. Mubarak

Abstract In this paper, the influence of chemical reaction and heat source/sink on an unsteady magnetohydrodynamics (MHD) nanofluid flow that squeezed between two radiating parallel plates embedded in porous media is investigated analytically. We consider water as base fluid and aluminum oxide (Al2O3) as its nanoparticle. We reduced the basic partial differential equations to ordinary differential equations which are solved by the homotopy analysis method (HAM). The effects of the squeeze number, permeability parameter of porous media, Hartmann number, thermal radiation parameter, Prandtl number, heat source/sink parameter, Eckert number, Schmidt number, and scaled parameter of chemical reaction on the flow, heat, and mass transfer are considered and assigned to graphs. The physical quantities such as Sherwood number, Nusselt number, and skin friction coefficient are computed for Al2O3–water, TiO2–water, Ag–water, and Cu–water nanofluids and assigned through graphs.


Author(s):  
Naramgari Sandeep ◽  
Chalavadi Sulochana ◽  
Isaac Lare Animasaun

With every passing day the heat transfer enhancement in the convectional base fluids plays a major role in several industrial and engineering processes. During these process nanofluids has attained its great importance to enhance the heat transfer rate in the convectional flows. Keeping this into view, in this study we investigated the stagnation point flow, heat and mass transfer behaviour of MHD Jeffrey nanofluid over a stretching surface in the presence of induced magneticfield, non-uniform heat source or sink and chemical reaction. Using similarity technique, the governing boundary layer partial differential equations are transformed into nonlinear coupled ordinary differential equations. The ordinary differential equations are solved numerically using Runge-Kutta-Felhberg scheme. An excellent agreement of the present results has been observed with the existed literature under some special cases. The effects of various dimensionless governing parameters on velocity, induced magneticfield, temperature and nanoparticle concentration profiles are discussed and presented through graphs. Also, friction factor, local Nusselt and Sherwood numbers are computed and discussed. Dual solutions are presented for suction and injection cases. It is found that dual solutions exist only for certain range of suction or injection parameter. It is also observed that an increase in the heat and mass transfer rate for higher values of Deborah number.


2014 ◽  
Vol 11 (2) ◽  
pp. 157-166 ◽  
Author(s):  
Venkata Ramana Reddy Gurrampati ◽  
S Mohammed Ibrahim ◽  
V S Bhagavan

This paper concerns with a steady two-dimensional flow of an electrically conducting incompressible dissipating fluid over an inclined semi-infinite porous surface with heat and mass transfer in presence of chemical reaction. The flow is permeated by a uniform transverse magnetic field. A scaling group of transformations is applied to the governing equations. The system remains invariant due to some relations among the parameters of the transformations. After finding three absolute invariants, a third-order ordinary differential equation corresponding to the momentum equation, and two second-order ordinary differential equations corresponding to energy and diffusion equations are derived. The coupled ordinary differential equations along with the boundary conditions are solved numerically. The effects of various parameters on velocity, temperature and concentration fields as well as skin-friction, Nusselt number and Sherwood number are presented graphically and in tabulated form. DOI: http://dx.doi.org/10.3329/jname.v11i2.18313


2017 ◽  
Vol 9 (4) ◽  
pp. 904-923 ◽  
Author(s):  
Shafqat Hussain

AbstractIn this paper, the problem of magnetohydrodynamics (MHD) boundary layer flow of nanofluid with heat and mass transfer through a porous media in the presence of thermal radiation, viscous dissipation and chemical reaction is studied. Three types of nanofluids, namely Copper (Cu)-water, Alumina (Al2O3)-water and Titanium Oxide (TiO2)-water are considered. The governing set of partial differential equations of the problem is reduced into the coupled nonlinear system of ordinary differential equations (ODEs) by means of similarity transformations. Finite element solution of the resulting system of nonlinear differential equations is obtained using continuous Galerkin-Petrov discretization together with the well-known shooting technique. The obtained results are validated using MATLAB “bvp4c” function and with the existing results in the literature. Numerical results for the dimensionless velocity, temperature and concentration profiles are obtained and the impact of various physical parameters such as the magnetic parameterM, solid volume fraction of nanoparticles 𝜙 and type of nanofluid on the flow is discussed. The results obtained in this study confirm the idea that the finite element method (FEM) is a powerful mathematical technique which can be applied to a large class of linear and nonlinear problems arising in different fields of science and engineering.


Sign in / Sign up

Export Citation Format

Share Document