scholarly journals Similarity transformations of heat and mass transfer effects on steady MHD free convection dissipative fluid flow past an inclined porous surface with chemical reaction

2014 ◽  
Vol 11 (2) ◽  
pp. 157-166 ◽  
Author(s):  
Venkata Ramana Reddy Gurrampati ◽  
S Mohammed Ibrahim ◽  
V S Bhagavan

This paper concerns with a steady two-dimensional flow of an electrically conducting incompressible dissipating fluid over an inclined semi-infinite porous surface with heat and mass transfer in presence of chemical reaction. The flow is permeated by a uniform transverse magnetic field. A scaling group of transformations is applied to the governing equations. The system remains invariant due to some relations among the parameters of the transformations. After finding three absolute invariants, a third-order ordinary differential equation corresponding to the momentum equation, and two second-order ordinary differential equations corresponding to energy and diffusion equations are derived. The coupled ordinary differential equations along with the boundary conditions are solved numerically. The effects of various parameters on velocity, temperature and concentration fields as well as skin-friction, Nusselt number and Sherwood number are presented graphically and in tabulated form. DOI: http://dx.doi.org/10.3329/jname.v11i2.18313

2012 ◽  
Vol 39 (3) ◽  
pp. 233-254 ◽  
Author(s):  
Gnaneswara Reddy

In this paper, an analysis has been carried out to study heat and mass transfer effects on steady two-dimensional flow of an electrically conducting incompressible dissipating fluid past an inclined semi-infinite porous surface with heat generation. A scaling group of transformations is applied to the governing equations. The system remains invariant due to some relations among the parameters of the transformations. After finding three absolute invariants, a third-order ordinary differential equation corresponding to the momentum equation, and two secondorder ordinary differential equations corresponding to energy and diffusion equations are derived. The coupled ordinary differential equations along with the boundary conditions are solved numerically. Many results are obtained and a representative set is displayed graphically to illustrate the influence of the various parameters on the dimensionless velocity, temperature and concentration profiles. Comparisons with previously published work are performed and the results are found to be in very good agreement.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Reda G. Abdel-Rahman

An analysis is carried out to study the problem of heat and mass transfer flow over a moving permeable flat stretching sheet in the presence of convective boundary condition, slip, radiation, heat generation/absorption, and first-order chemical reaction. The viscosity of fluid is assumed to vary linearly with temperature. Also the diffusivity is assumed to vary linearly with concentration. The governing partial differential equations have been reduced to the coupled nonlinear ordinary differential equations by using Lie group point of transformations. The system of transformed nonlinear ordinary differential equations is solved numerically using shooting techniques with fourth-order Runge-Kutta integration scheme. Comparison between the existing literature and the present study was carried out and found to be in excellent agreement. The effects of the various interesting parameters on the flow, heat, and mass transfer are analyzed and discussed through graphs in detail. The values of the local Nusselt number, the local skin friction, and the local Sherwood number for different physical parameters are also tabulated.


Author(s):  
Naramgari Sandeep ◽  
Chalavadi Sulochana ◽  
Isaac Lare Animasaun

With every passing day the heat transfer enhancement in the convectional base fluids plays a major role in several industrial and engineering processes. During these process nanofluids has attained its great importance to enhance the heat transfer rate in the convectional flows. Keeping this into view, in this study we investigated the stagnation point flow, heat and mass transfer behaviour of MHD Jeffrey nanofluid over a stretching surface in the presence of induced magneticfield, non-uniform heat source or sink and chemical reaction. Using similarity technique, the governing boundary layer partial differential equations are transformed into nonlinear coupled ordinary differential equations. The ordinary differential equations are solved numerically using Runge-Kutta-Felhberg scheme. An excellent agreement of the present results has been observed with the existed literature under some special cases. The effects of various dimensionless governing parameters on velocity, induced magneticfield, temperature and nanoparticle concentration profiles are discussed and presented through graphs. Also, friction factor, local Nusselt and Sherwood numbers are computed and discussed. Dual solutions are presented for suction and injection cases. It is found that dual solutions exist only for certain range of suction or injection parameter. It is also observed that an increase in the heat and mass transfer rate for higher values of Deborah number.


2012 ◽  
Vol 197 ◽  
pp. 712-716 ◽  
Author(s):  
S. Shateyi ◽  
S.S. Motsa

The effects of chemical reaction and thermal-diffusion mixed convection heat and mass transfer for Hiemenz flow through porous media has been studied. The plate is embedded in a uniform porous medium in order to allow for possible fluid wall suction or blowing and has a power-law variation of both the wall temperature and concentration. We used similarity solution to transform the system of partial differential equations, into a boundary value problem of coupled ordinary differential equations. We then solve these ordinary differential equations by a MATLAB routine bvp4c. We conducted a parametric study of all involved parameters and the results represented graphically.


2011 ◽  
Vol 7 (1) ◽  
pp. 11-18 ◽  
Author(s):  
Naikotin Kishan ◽  
P. Amrutha

This paper deals with the study of  nonlinear MHD flow, with heat and mass transfer characteristics of an incompressible, viscous, electrically conducting and Boussinesq fluid on a vertical stretching surface with thermal stratification and chemical reaction by taking in to account the viscous dissipation effects. Adopting the similarity transformation, governing nonlinear partial differential equations of the problem are transformed to nonlinear ordinary differential equations. The Quasi-linearization technique is used for the non-linear momentum equation and then the numerical solution of the problem is derived using implicit finite difference technique, for different values of the dimensionless parameters. The numerical values obtained for velocity profiles, temperature profiles and concentration profiles are represent graphically in figures.  The results obtained show that the flow field is influenced appreciably by the presence of viscous dissipation, thermal stratification, chemical reaction and magnetic field.DOI: 10.3329/jname.v7i1.3254 


2014 ◽  
Vol 20 (2) ◽  
pp. 183-195 ◽  
Author(s):  
D. Srinivasacharya ◽  
Upendar Mendu

In this paper, the effects of radiation and first order chemical reaction on free convection heat and mass transfer in a micropolar fluid is considered. A uniform magnetic field is applied normal to the plate. The plate is maintained with variable surface heat and mass fluxes. The governing nonlinear partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations using similarity transformations and then solved numerically using the Keller-box method. The numerical results are compared and found to be in good agreement with previously published results as special cases of the present investigation. The dimensionless velocity, microrotation, temperature, concentration and heat and mass transfer rates are presented graphically for various values of coupling number, magnetic parameter, radiation parameter, chemical reaction parameter. The numerical values of the skin friction and wall couple stress for different values of governing parameters are also tabulated.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Odelu Ojjela ◽  
N. Naresh Kumar

This paper presents an incompressible two-dimensional heat and mass transfer of an electrically conducting micropolar fluid flow in a porous medium between two parallel plates with chemical reaction, Hall and ion slip effects. Let there be periodic injection or suction at the lower and upper plates and the nonuniform temperature and concentration at the plates are varying periodically with time. The flow field equations are reduced to nonlinear ordinary differential equations using similarity transformations and then solved numerically by quasilinearization technique. The profiles of velocity components, microrotation, temperature distribution and concentration are studied for different values of fluid and geometric parameters such as Hartmann number, Hall and ion slip parameters, inverse Darcy parameter, Prandtl number, Schmidt number, and chemical reaction rate and shown in the form of graphs.


Author(s):  
R. Mohapatra ◽  
B. Mahanthesh ◽  
B.J. Gireesha ◽  
S.R. Mishra

AbstractIn many chemical engineering processes, a chemical reaction between a foreign mass and the fluid does occur. These processes find relevance in polymer production, oxidation of solid materials, ceramics or glassware manufacturing, tubular reactors, food processing, and synthesis of ceramic materials. Therefore, an exploration of homogeneous first-order chemical reaction effects on heat and mass transfer along with entropy analysis of Jeffrey liquid flow towards a stretched isothermal porous sheet is performed. Fluid is conducting electrically in the company of transverse magnetic field. Variations in heat and mass transfer mechanisms are accounted in the presence of viscous dissipation, heat source/sink and cross-diffusion aspects. The partial differential equations system governing the heat transfer of Jeffery liquid is reformed to the ordinary differential system through relevant transformations. Numerical solutions based on Runge-Kutta shooting method are obtained for the subsequent nonlinear problem. A parametric exploration is conducted to reveal the tendency of the solutions. The present study reveals that the Lorentz force due to magnetism can be used as a key parameter to control the flow fields. Entropy number is larger for higher values of Deborah and Brinkman numbers. It is also established that the concentration species field and its layer thickness of the Jeffery liquid decreases for a stronger chemical reaction aspect. To comprehend the legitimacy of numerical results a comparison with the existing results is made in this exploration and alleged an admirable agreement.


Author(s):  
Oluwole Daniel Makinde ◽  
Z.H. Khan ◽  
W.A. Khan ◽  
M.S. Tshehla

The magneto-hemodynamic laminar flow of a conducting incompressible viscous nanofluid (blood) through a channel of slowly varying width under a transverse magnetic is investigated using perturbation and numerical methods. For this purpose, Buongiorno’s model is employed for the analysis in four different channels namely, convergent, divergent, locally constricted and wavy channels. Oberbeck-Boussinesq approximation is used and the partial differential equations are solved using perturbation series method. For validation, the governing differential equations are also solved numerically. Both perturbation and numerical results are compared and are found in good agreement. The effects of pertinent parameters on the fluid flow, heat and mass transfer in the selected channels are analyzed for special cases. The results show that both thermal and solutal Richardson numbers have opposite behaviour for skin friction, heat and mass transfer in each channel.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Kh. Abdul Maleque

We study an unsteady MHD free convection heat and mass transfer boundary layer incompressible fluid flow past a vertical porous plate in the presence of viscous dissipation, heat generation/absorption, chemical reaction, and Arrhenius activation energy. The plate is moving with uniform velocity. The chemical reaction rate in the function of temperature is also considered. The governing partial differential equations are reduced to ordinary differential equations by introducing local similarity transformation (Maleque (2010)) and then are solved numerically by shooting method using the Nachtsheim-Swigert iteration technique. The results of the numerical solution are then presented graphically as well as the tabular form for difference values of the various parameters.


Sign in / Sign up

Export Citation Format

Share Document