Numerical Simulations of SFRC Projectile Penetrating into Limestone Using FEM/SPH Coupling Method

2012 ◽  
Vol 217-219 ◽  
pp. 51-54
Author(s):  
Jing Han ◽  
Hua Wang ◽  
Zhi Fei Wang

The method of using efficient inert projectile with highly efficient propulsion has great potential for the rapid and efficient excavation of rocks and ore in both surface and underground. In this paper, a series of numerical experiments were performed to simulate rock fragmentation resulted from steel fiber reinforced concrete (SFRC) projectile by using hydrodynamic finite element code AUTODYN. The fully coupled method was been adopted, in which the limestone, molded using Lagrangian mesh, is coupled to SFRC projectile molded using smoothed particle hydrodynamics (SPH) method. The numerical model was verified by comparing the simulation results with the field experiment data. Furthermore, the effect factors of geometric parameters of SFRC projectile and fibers content on the muck production were also discussed. The results of this study suggest that numerical simulation could be substituted for field experiment used for performance assessment of SFRC projectile.

2022 ◽  
Author(s):  
Binghui Cui ◽  
Liaojun Zhang

Abstract Flow-type landslide is one type of landslide that generally exhibits characteristics of high flow velocities, long jump distances, and poor predictability. Simulation of it facilitates propagation analysis and provides solutions for risk assessment and mitigation design. The smoothed particle hydrodynamics (SPH) method has been successfully applied to the simulation of two-dimensional (2D) and three-dimensional (3D) flow-like landslides. However, the influence of boundary resistance on the whole process of landslide failure is rarely discussed. In this study, a boundary algorithm considering the friction is proposed, and integrated into the boundary condition of the SPH method, and its accuracy is verified. Moreover, the Navier-Stokes equation combined with the non-Newtonian fluid rheology model was utilized to solve the dynamic behavior of the flow-like landslide. To verify its performance, the Shuicheng landslide event, which occurred in Guizhou, China, was taken as a case study. In the 2D simulation, a sensitivity analysis was conducted, and the results showed that the shearing strength parameters have more influence on the computation accuracy in comparison with the coefficient of viscosity. Afterwards, the dynamic characteristics of the landslide, such as the velocity and the impact area, were analyzed in the 3D simulation. The simulation results are in good agreement with the field investigations. The simulation results demonstrate that the SPH method performs well in reproducing the landslide process, and facilitates the analysis of landslide characteristics as well as the affected areas, which provides a scientific basis for conducting the risk assessment and disaster mitigation design.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1323 ◽  
Author(s):  
Yulia Yu. Émurlaeva ◽  
Ivan A. Bataev ◽  
Qiang Zhou ◽  
Daria V. Lazurenko ◽  
Ivan V. Ivanov ◽  
...  

A welding window is one of the key concepts used to select optimal regimes for high-velocity impact welding. In a number of recent studies, the method of smoothed particle hydrodynamics (SPH) was used to find the welding window. In this paper, an attempt is made to compare the results of SPH simulation and classical approaches to find the boundaries of a welding window. The experimental data on the welding of 6061-T6 alloy obtained by Wittman were used to verify the simulation results. Numerical simulation of high-velocity impact accompanied by deformation and heating was carried out by the SPH method in Ansys Autodyn software. To analyze the cooling process, the heat equation was solved using the finite difference method. Numerical simulation reproduced most of the explosion welding phenomena, in particular, the formation of waves, vortices, and jets. The left, right, and lower boundaries found using numerical simulations were in good agreement with those found using Wittman’s and Deribas’s approaches. At the same time, significant differences were found in the position of the upper limit. The results of this study improve understanding of the mechanism of joint formation during high-velocity impact welding.


2014 ◽  
Vol 1017 ◽  
pp. 758-763
Author(s):  
Jing Si Wang ◽  
Keita Shimada ◽  
Masayoshi Mizutani ◽  
Tunemoto Kuriyagawa

The material removal in ultrasonic machining (USM) is based on brittle fracturing of workpiece materials. The properties and fracture behavior are different for varied materials, and they would have an influence on the machining performance of USM. The smoothed particle hydrodynamics (SPH) method was used to simulate the USM process for different workpiece materials. Three typical hard and brittle materials, i.e. silicon carbide (SiC), alumina (Al2O3), and glass will be used as the workpiece materials. Experiments are also conducted for comparing with the simulation results. Through this study, the material fracturing processes for different work materials are shown visually using the SPH method, which is very useful for USM study.


2017 ◽  
Vol 59 (7-8) ◽  
pp. 653-660 ◽  
Author(s):  
Wang Yan ◽  
Ge Lu ◽  
Chen Shi Jie ◽  
Zhou Li ◽  
Zhang Ting Ting

2021 ◽  
pp. 136943322098165
Author(s):  
Hossein Saberi ◽  
Farzad Hatami ◽  
Alireza Rahai

In this study, the co-effects of steel fibers and FRP confinement on the concrete behavior under the axial compression load are investigated. Thus, the experimental tests were conducted on 18 steel fiber-reinforced concrete (SFRC) specimens confined by FRP. Moreover, 24 existing experimental test results of FRP-confined specimens tested under axial compression are gathered to compile a reliable database for developing a mathematical model. In the conducted experimental tests, the concrete strength was varied as 26 MPa and 32.5 MPa and the steel fiber content was varied as 0.0%, 1.5%, and 3%. The specimens were confined with one and two layers of glass fiber reinforced polymer (GFRP) sheet. The experimental test results show that simultaneously using the steel fibers and FRP confinement in concrete not only significantly increases the peak strength and ultimate strain of concrete but also solves the issue of sudden failure in the FRP-confined concrete. The simulations confirm that the results of the proposed model are in good agreement with those of experimental tests.


1984 ◽  
Vol 21 (3) ◽  
pp. 108-111
Author(s):  
V. S. Sterin ◽  
V. A. Golubenkov ◽  
G. S. Rodov ◽  
B. V. Leikin ◽  
L. G. Kurbatov

Sign in / Sign up

Export Citation Format

Share Document