Application of Hybrid Fuzzy-PID Control with Coupled Rules in the Hydraulic Positioning System

2012 ◽  
Vol 220-223 ◽  
pp. 402-405
Author(s):  
Li Hong Dong

According to the nonlinearity and time-variation of the positioning control in hydraulic system, a kind of Hybrid Fuzzy-PID Controller with Coupled Rules (HFPIDCR) is proposed. In this control system, the bulk modulus is considered as a variable. The novelty of this controller is to combine the fuzzy logic and PID controllers in a switching condition. Simulation results of the HFPIDCR are compared with the results of traditional PID, Fuzzy Logic Controller (FLC), and Hybrid Fuzzy-PID Controller (HFPID). It is demonstrated that the HFPIDCR has fast response, short adjustment time, high control precision and other advantages, and it can meet the requirements of the positioning control in hydraulic system.

2021 ◽  
Vol 26 (6) ◽  
pp. 583-588
Author(s):  
Zaw Myo Naing ◽  

Servo drives are one of the most widely utilized devices in various mechanical systems and industrial applications to provide precise position control. The study of servo driver produc-tiveness and performance index is the important task. In this work, PID controller and fuzzy log-ic controller (FLC) were developed to control the position of a DC servo drive. The MATLAB Simulink program was investigated and implemented to calculate the values of servo drive pa-rameters, and a scheme for simulating the operation of a servo drive using different controllers was presented. A mathematical model of a DC servo drive for a positioning control system has been proposed. The control characteristics of the PID controller, fuzzy logic controller and fuzzy PID controller are compared. The simulation results have shown that the PID controller allows for an overshoot of about 1 % with a settling time of about 4 sec. The use of the fuzzy PID con-troller reduces the maximum overshoot to 1 % and decreases the settling time to 2 sec. As a re-sult, the fuzzy PID controller allows for better performance and efficiency compared to other controllers.


2004 ◽  
Vol 471-472 ◽  
pp. 264-268 ◽  
Author(s):  
Da Wei Zhang ◽  
Yan Ling Tian ◽  
Bing Yan

In order to eliminate the non-linearity of a grinding auxiliary workpiece table, a hybrid fuzzy PID controller has been developed. The two-dimensional fuzzy control with self-tuning factor is utilized to improve the performance. The Max-Min inference mechanism and COG defuzzification method are used to obtain the crisp output of the fuzzy controller. To eliminate the oscillation at balance position, the conventional PID controller is used in the small range of the error and the switch between two controllers can automatically realize according the preset value. Simulation and experimental testing have been carried out to validate the performance of the hybrid fuzzy PID controller.


2012 ◽  
Vol 212-213 ◽  
pp. 1244-1248
Author(s):  
Yan Jun Liu ◽  
Yu Dong Xie ◽  
Hui Wang

A valve-controlled cylinder hydraulic system is used widely in engineering. The principle of the valve-controlled cylinder hydraulic system is presented. The fuzzy PID controller of valve-controlled cylinder hydraulic system is designed, and the simulation model is built. Based on the model, simulation analysis is carried out. The results show that the PID controller parameters can change with the variations of control error and control-error change rate according to fuzzy reasoning, the response error of valve-controlled cylinder is kept in a range of -0.06~0.1cm, and the required control accuracy can be obtained.


2015 ◽  
Vol 761 ◽  
pp. 142-147
Author(s):  
Shin Horng Chong ◽  
Ting Tze Ter ◽  
Vasanthan Sakthivelu

This paper presents the comparison of positioning control between conventional PID controller and fuzzy PID controller. The controllers are applying into the ball screw system driven by DC motor to observe and analyze the change of the positioning output responses. The DC motor is used because it is easy to setup and control, has precise rotation and most importantly is low cost. As for ball screw mechanism itself, has smooth motion, not easy to wear out and high mechanical efficiency. The problem is arise when the used of conventional PID controller in the ball screw system driven by DC motor shows less adaptability to the changes of system parameter. Therefore, the objective of this project is to design an adaptive fuzzy PID controller to overcome the limitation of conventional PID controller. The performances between the conventional PID controller and fuzzy PID controller will be compared in order to validate the robustness of the fuzzy PID controller. So this project is to compare the robustness of two proposed controllers by comparing the results of ball screw table position when the parameter mass of load is set to vary. The experiment is started with designing the algorithms of fuzzy PID control and conventional PID controller, then the designed algorithm is applied onto the experimental that has been setup. The performances especially the transient response and steady state error between the controllers will be collected and compared by conducting the point to point positioning, tracking and variation of load weight experiments.


Author(s):  
Quang-Vi Ngo ◽  
Chai Yi ◽  
Trong-Thang Nguyen

<p>This paper aims to design the pitch angle control based on proportional–integral–derivative (PID) controller combined with fuzzy logic for small-scale wind turbine systems. In this control system, the pitch angle is controlled by the PID controller with their parameter is tuned by the fuzzy logic controller. This control system can compensate for the nonlinear characteristic of the pitch angle and wind speed. A comparison between the fuzzy-PID-controller with the conventional PID controller is carried out. The effectiveness of the method is determined by the simulation results of a small wind turbine using a permanent magnet generator (PMSG).</p>


2014 ◽  
Vol 945-949 ◽  
pp. 2568-2572
Author(s):  
Si Yuan Wang ◽  
Guang Sheng Ren ◽  
Pan Nie

The test rig for hydro-pneumatic converter used in straddle type monorail vehicles was researched, and its electro-pneumatic proportional control system was set up and simulated based on AMESim/Simulink. Compared fuzzy-PID (Proportion Integral Derivative) controller with PID controller through fuzzy logic tool box in Simulink, the results indicate that, this electro-pneumatic proportional control system can meet design requirements better, and fuzzy-PID controller has higher accuracy and stability than PID controller.


Author(s):  
Bambang Sumantri ◽  
Eko Henfri Binugroho ◽  
Ilham Mandala Putra ◽  
Rika Rokhana

The two-wheeled electric skateboard (TWS) is designed for a personal vehicle. A Fuzzy-PID control strategy is designed and implemented for controlling its motion. Basically, motions control of the TWS is performed by balancing the pitch position of the TWS. Performance of the designed controller is demonstrated experimentally. The Fuzzy algorithm updates the PID gains and therefore it can handle the changing of the TWS load. Contribution of Fuzzy-PID in reducing the electric energy consumption, which is an important issue in electrical system, is also evaluated. The Fuzzy-PID successes to reduce the electric energy consumption of the TWS compared to the conventional PID.


2013 ◽  
Vol 310 ◽  
pp. 518-523
Author(s):  
Zhi Qiang Chao ◽  
Xin Ze Li ◽  
Ai Hong Meng

In recent years, hydraulic simulation has become an important means to research hydraulic system, in order to enable the single degree platform vibration curve with better traceability and reach the requirement of the test, this paper represent single degree system platform stimulated by simulation software AMESim, taking the Single degree freedom vibration hydraulic system as an example, MATlab/simulink is applied to the design of the vibration platform system fuzzy PID controller. Through the comparison between the simulation test and traditional PID controller, the designed self-tuning fuzzy controller can control the platform better, with smaller overshoot, faster response, shorter adjusting time, as well as fulfill the permissible accuracy.


Sign in / Sign up

Export Citation Format

Share Document