Conceptual Design of Solar Powered Unmanned Arial Vehicle

2012 ◽  
Vol 225 ◽  
pp. 299-304 ◽  
Author(s):  
Nidal H. Abu-Hamdeh ◽  
Khaled A. Alnefaie ◽  
Majed K. Al-Hajjaj

The solar-powered aircraft represents a major step forward in environmentally friendly vehicle technology. An unmanned aircraft vehicle (UAV) was designed to fly for 24 hours continuously to achieve surveillance at low altitude. It is a lightweight, solar-powered, remotely piloted flying wing aircraft that is demonstrating the technology of applying solar power for long-duration and low-altitude flight. Several programs and codes were used in the designing process of the UAV and generating its layout. A MATLAB computer programming code was written to optimize on various values of aspect ratio (AR) and wingspan (b) after setting the mission requirements and estimating the technological parameters. A program called Java Foil was used to calculate the lift. Another program called RDS was used to obtain the final layout of the aircraft. The great benefit is that the design is general enough to be applied to different values of aspect ratio and wingspan. Moreover, the analytical form of the method allows identifying clear some general principles like the optimization on various values of aspect ratio and wingspan, and the calculation of the lift.

Author(s):  
Kim-Phuong L. Vu ◽  
Jonathan VanLuven ◽  
Timothy Diep ◽  
Vernol Battiste ◽  
Summer Brandt ◽  
...  

A human-in-the-loop simulation was conducted to evaluate the impact of Unmanned Aircraft Systems (UAS) with low size, weight, and power (SWaP) sensors operating in a busy, low-altitude sector. Use of low SWaP sensors allow for UAS to perform detect-and-avoid (DAA) maneuvers against non-transponding traffic in the sector. Depending upon the detection range of the low SWaP sensor, the UAS pilot may or may not have time to coordinate with air traffic controllers (ATCos) prior to performing the DAA maneuver. ATCo’s sector performance and subjective ratings of acceptability were obtained in four conditions that varied in UAS-ATCo coordination (all or none) prior to the DAA maneuver and workload (higher or lower). For performance, ATCos committed more losses of separation in high than low workload conditions. They also had to make more flight plan changes to manage the UAS when the UAS pilot did not coordinate DAA maneuvers compared to when they did coordinate the maneuvers prior to execution. Although the ATCos found the DAA procedures used by the UAS in the study to be acceptable, most preferred the UAS pilot to coordinate their DAA maneuvers with ATCos prior to executing them.


Author(s):  
Ying Bi ◽  
Liyang Zhou ◽  
Yang Wen ◽  
Xiaoping Ma ◽  
Yong He

Author(s):  
Richard J. Hornick ◽  
Norman M. Lefritz

This article describes a study conducted to determine the effects of long duration, random vibration—characteristic of low-altitude high-speed (LAHS) flight aircraft—on human performance, physiological, biodynamic, and tolerance responses. Ten subjects experienced 0.10, 0.15, and 0.20 RMS g with a shaped power spectral density from 1 to 12 cps while engaging in LAHS control tasks. Simulation runs were of 5 hours duration, with the centermost 4 hours under dynamic conditions. Results of this experiment are related to those of other studies which had the same general objectives in order to provide a brief review and summary about what is known regarding human capabilities for LAHS flight.


2020 ◽  
Vol 10 (4) ◽  
pp. 1300 ◽  
Author(s):  
Xin Zhao ◽  
Zhou Zhou ◽  
Xiaoping Zhu ◽  
An Guo

This paper describes our work on a small, hand-launched, solar-powered unmanned aerial vehicle (UAV) suitable for low temperatures and high altitudes, which has the perpetual flight potential for conservation missions for rare animals in the plateau area in winter. Firstly, the conceptual design method of a small, solar-powered UAV based on energy balance is proposed, which is suitable for flight in high-altitude and low-temperature area. The solar irradiance model, which can reflect the geographical location and time, was used. Based on the low-temperature discharge test of the battery, a battery weight model considering the influence of low temperature on the battery performance was proposed. Secondly, this paper introduces the detailed design of solar UAV for plateau area, including layout design, structure design, load, and avionics. To increase the proportion of solar cells covered, the ailerons were removed and a rudder was used to control both roll and yaw. Then, the dynamics model of an aileron-free layout UAV was developed, and the differences in maneuverability and stability of aileron-free UAV in plateau and plain areas were analyzed. The control law and trajectory tracking control law were designed for the aileron-free UAV. Finally, the flight test was conducted in Qiangtang, Tibet, at an altitude of 4500 m, China’s first solar-powered UAV to take off and land above 4500 m on the plateau in winter (−30 °C). The test data showed the success of the scheme, validated the conceptual design method and the success of the control system for aileron-free UAV, and analyzed the feasibility of perpetual flight carrying different loads according to the flight energy consumption data.


Author(s):  
Jorge E. Pacheco ◽  
Cristina H. Amon ◽  
Susan Finger

During conceptual design, designers need tools to help improve design decisions and reduce design times. We are working to develop techniques to create Bayesian surrogate models that respond to designers’ needs during conceptual stages of the design process. Bayesian surrogate models give analytical form to the overall performance of a system and can evolve along with the design. Bayesian surrogate models provide a mathematically rigorous framework in which computational models can be updated based on previous outcomes. In this paper, we present techniques that allow the addition or suppression of parameters without discarding previously obtained information. We also present a case study that illustrates how a surrogate model is constructed in stages when parameters are added or suppressed during the design process. Visualization tools, such as plots of the main effects of parameters, can be derived from surrogate models. These tools can be used to provide knowledge about the parameters that influence the design. Finally, a design problem is used to illustrate how Bayesian surrogate models can inform the designer about tradeoffs that would not be apparent from simulation data alone.


Sign in / Sign up

Export Citation Format

Share Document