Flexible Multistage Bayesian Models for Use in Conceptual Design

Author(s):  
Jorge E. Pacheco ◽  
Cristina H. Amon ◽  
Susan Finger

During conceptual design, designers need tools to help improve design decisions and reduce design times. We are working to develop techniques to create Bayesian surrogate models that respond to designers’ needs during conceptual stages of the design process. Bayesian surrogate models give analytical form to the overall performance of a system and can evolve along with the design. Bayesian surrogate models provide a mathematically rigorous framework in which computational models can be updated based on previous outcomes. In this paper, we present techniques that allow the addition or suppression of parameters without discarding previously obtained information. We also present a case study that illustrates how a surrogate model is constructed in stages when parameters are added or suppressed during the design process. Visualization tools, such as plots of the main effects of parameters, can be derived from surrogate models. These tools can be used to provide knowledge about the parameters that influence the design. Finally, a design problem is used to illustrate how Bayesian surrogate models can inform the designer about tradeoffs that would not be apparent from simulation data alone.

2012 ◽  
Vol 605-607 ◽  
pp. 283-287
Author(s):  
Fei Cao

Mechanical products design process always focuses on the description of product structure information, while lacking of the expression and application of function and knowledge information. This paper proposes an intelligent design approach of mechanical products based on Function-Knowledge-Structure (FKS). The gene coding of function, knowledge and structure are constructed, and the correlation matrix of the Functional-Structure (FS) and Knowledge-Structure (KS) are introduced to calculate the fitness function. A case study of the conceptual design on bag forming, filling and sealing machine shows the intelligent design process based on FKS.


Author(s):  
Yu-Xin Wang ◽  
Yu-Tong Li ◽  
Jian-Wei Wang

This paper presents a novel indirect matching approach between the function layer and the form layer to enhance the capability for the FBS method to obtain the creative conceptual design results. Firstly, the basic operation actions set, which is composed of the basic operation actions obtained by decomposing each function in the lowest level of the function decomposition tree in the FBS model into the sub-functions, in the function layer is regrouped dynamically. This behavior regroup process has introduced the new design variables into the conceptual design process and leads the behavior creativity to produce. On the other hand, considering the multi-functions for each basic structure to have and representing these functions with the basic operation actions, then the basic operation actions set in the form layer is set up. Dynamic regrouping this set in the form layer, the new design variables has been introduced into the conceptual design process, and leads the form creativity to produce. Through the above behavior-form double directions creative process, the solution scope of the conceptual design is enlarged obviously. Therefore, the method present in this paper has enough capability to obtain the creative conceptual results. Furthermore, the model presented in this paper is represented with the quotient space mathematically. The case study has shown that in the function layer, through adjusting the attribute function, which determines the partition grain of the basic operation actions set in the function layer or in the form layer, the new behaviors can be generated.


Author(s):  
Szu-Hung Lee ◽  
Pingfei Jiang ◽  
Peter R. N. Childs ◽  
Keith Gilroy

A study on utilising a graphical interface to represent movement transmission within products has been conducted to support a creative conceptual design process that separates the consideration of functional requirements and motion requirements. In engineering design, many representations of product structure have been proposed to assist in understanding how a design is constituted. However, most of these representations demonstrate only functions and are not able to demonstrate design structure. Functional Analysis Diagrams (FAD) provides a solution for this. An FAD shows not only functions but also physical elements by the network of blocks and arrows and thus it is capable of demonstrating various types of information and the design scheme. This characteristic gives FADs an advantage for designers to combine different types of information including useful and harmful interactions to gain an overview of the design task. This study focuses on using circles instead of arrows to represent movement attributes of mechanisms and machine elements in a Kinematic Functional Analysis Diagram (KFAD) and explores methods of utilising it in mechanical design. A commercial case study of medical equipment design conducted with the assistance of KFADs and a component database, mechanism and machine elements taxonomy (MMET), is described to illustrate the process. The design outcome shows that it is feasible to follow the proposed conceptual design process. With the help of KFADs and the machine elements taxonomy to enable consideration of movements, diverse considerations and design solutions are possible.


2004 ◽  
Vol 4 (2) ◽  
pp. 150-159 ◽  
Author(s):  
Y. Zeng ◽  
A. Pardasani , ◽  
J. Dickinson , ◽  
Z. Li , ◽  
H. Antunes , and ◽  
...  

This paper aims to establish a mathematical foundation for modeling free-hand design sketches throughout the conceptual design process. Both experimental and theoretical approaches are used. In using the experimental approach, one case study from a book and one case study from an automobile assembly system manufacturer are used to illustrate the characteristics of design sketches. These characteristics provide the requirements for models of sketch representation. In using the theoretical approach, a mathematical structure of design sketches is established. This mathematical structure can naturally and logically model the evolving sketches generated in the design process, through integrating the strengths of set theory and mereology. In addition to the formal representation of design sketches, the mathematical model provides a logical foundation for formally designing sketch interpretation algorithms. An algorithmic structure of three-dimension reconstruction from two-dimension line drawing is derived using this mathematical model.


2018 ◽  
Vol 11 (2) ◽  
pp. 44-60
Author(s):  
Kitti Károlyfi ◽  
Gabriella László ◽  
Ferenc Papp ◽  
Raymond Bükkösi

This article describes the conceptual design process of an equestrian centre, presenting the covered stadium of the building complex in detail, designed it as a free-form, wide-span steel structure. The main goal of this study is to present the application of the parametric design method through a case study and to examine the interoperability opportunities between architectural and structural design software.


Author(s):  
Douglas Eddy ◽  
Sundar Krishnamurty ◽  
Ian Grosse ◽  
Jack Wileden

This paper presents an e-Design framework for knowledge management through its application in an engineering design case study. The e-Design framework enables the implementation of integrated design information throughout the entire design process. It facilitates the ease of sharing real time information across multiple individual designers, departments, or organizations as would be required in large scale design efforts. Similarly, it allows for the ease of use of technical tools integral to the design process that small design departments depend upon. Thus, regardless of the scale, the efficiency of engineering design can be improved with the use of the e-Design framework. The many features of the e-Design framework are exemplified through its application in a practical industry design problem. The case study in this paper addresses the utility and ease of use of this framework and provides one potential implementation method. This study involves a representative application of an innovative new mast design to elevate a surveillance camera on a military vehicle. The design process utilizes the NIST functional basis [3] to improve effectiveness and efficiency during conceptual design. The decision tool module of the e-Design framework is then used to evaluate and select the best conceptual design based on product design criteria. We use this case study to illustrate information quality and the clarity of design intent throughout the entire design process. The results reveal a usable design process method that can improve the transparency of design knowledge from design conception to completion. Additional benefits include storing of the information generated at the early stages for sharing and reuse throughout the entire design process. Most of all, improved transparent communication throughout the design process will reduce duplication of efforts and trial and error occurrences.


Author(s):  
Seth R. Crouch ◽  
Gregory M. Mocko

Requirements are an essential element to engineering design as they are used to focus idea generation during conceptual design, provide criteria for decision making during concept selection, and verify the chosen concept fulfills product needs. Because they are essential to the entire design process, emphasis must be placed on ensuring that they are correct. This research focuses on a value-based methodology useful for challenging and validating established requirements. A case study was conducted on an industry-sponsored project to use this value-based process on the requirements that constrain the design of an automotive seat. A human anthropomorphic model, comfort value model, occupant safety model, and a model of an automotive seat are integrated to establish an H-point travel window to maximize the safety and comfort of an automotive seating structure. This case study shows that this approach provides evidence to establish requirements based on value to the human rather than legacy seating requirements.


Author(s):  
Doug Brady ◽  
Neal P. Juster

Abstract Modern CAD systems are able to represent the geometry of engineering components proficiently. This aids the later stages of the design process but does not help during conceptual design. This paper outlines a suite of programs known as the Conceptual Assembly Design Tool which allows designers to create outline assembly geometry from function structures, thus providing a potential bridge between conceptual and embodiment design. The paper includes a case study showing how the system may be used during the resign of a moderately complex product.


2005 ◽  
Vol 21 (03) ◽  
pp. 186-194
Author(s):  
Howard Moyst ◽  
Biman Das

This paper reviews a ship design and construction case study in the context of the published literature on the design process and its impact on construction. The objective was to explore the factors that impact design and construction lead time and cost. Design and construction managers constantly experience pressure to accelerate the construction start time in an environment characteristic of frequent design changes and rework. Often the construction of the first ships of a series will aggressively overlap the design phase. This investigation assessed a case study that illustrated that as the degree of overlap between design and construction increases, design changes increased ship construction costs and duration. This negates the advantage of trying to reduce lead time by overlapping phases. Before strategies of overlapping are utilized, shipbuilders need to better understand the details of the design process and its integration with other functions to improve design quality and reduce the impact of design changes on manufacturing and construction. It is recommended that when overlapping strategies are considered, design changes and their impact on construction be factored into the decision. A better strategy would be to eliminate design quality issues and design and construction rework.


Sign in / Sign up

Export Citation Format

Share Document