Finite Element Analysis of Tube Tower for Vertical Axis Wind Turbine

2012 ◽  
Vol 229-231 ◽  
pp. 373-376
Author(s):  
Bin Liu ◽  
Yuan Yuan Zhang ◽  
Fu Zhao ◽  
Yan Jue Gong ◽  
Chun Ling Meng

It is very significant for the vertical axis wind turbine to design the best support structure with high strength and stiffness. This paper discusses modeling a kind of tube tower structure of the vertical axis wind turbine and carries out static and modal analysis based on the finite element method. The static and modal characteristic of tube tower such as stress, strain and mode shapes are obtained accurately which can provide basis to optimal design the support structure for vertical axis wind turbine.

2012 ◽  
Vol 229-231 ◽  
pp. 613-616
Author(s):  
Yan Jue Gong ◽  
Yuan Yuan Zhang ◽  
Fu Zhao ◽  
Hui Yu Xiang ◽  
Chun Ling Meng ◽  
...  

As an important part of the vertical axis wind turbine, the support structure should have high strength and stiffness. This article adopts finite element method to model a kind of tower structure of the vertical axis wind turbine and carry out static and modal analysis. The static and dynamic characteristic results of tower in this paper provide reference for optimization design the support structure of wind turbine further.


2019 ◽  
Vol 44 (1) ◽  
pp. 49-59
Author(s):  
Nilesh Chandgude ◽  
Nitin Gadhave ◽  
Ganesh Taware ◽  
Nitin Patil

In this article, three small wind turbine blades of different materials were manufactured. Finite element analysis was carried out using finite element software ANSYS 14.5 on modeled blades of National Advisory Committee for Aeronautics 4412 airfoil profile. From finite element analysis, first, two flap-wise natural frequencies and mode shapes of three different blades are obtained. Experimental vibration analysis of manufactured blades was carried out using fast Fourier transform analyzer to find the first two flap-wise natural frequencies. Finally, the results obtained from the finite element analysis and experimental test of three blades are compared. Based on vibration analysis, we found that the natural frequency of glass fiber reinforced plastic blade reinforced with aluminum sheet metal (small) strips increases compared with the remaining blades. An increase in the natural frequency indicates an increase in the stiffness of blade.


2018 ◽  
Vol 7 (4.38) ◽  
pp. 1395 ◽  
Author(s):  
Kadhim H. Suffer ◽  
Yassr Y. Kahtan ◽  
Zuradzman M. Razlan

The present global energy economy suggests the use of renewable sources such as solar, wind, and biomass to produce the required power. The vertical axis wind turbine is one of wind power applications. Usually, when the vertical axis wind turbine blades are designed from the airfoil, the starting torque problem begins. The main objective of this research is to numerically simulate the combination of movable vanes of a flat plate with the airfoil in a single blade configuration to solve the starting torque problem. CFD analysis in ANSYS-FLUENT and structural analysis in ANSYS of combined blade vertical axis wind turbine rotor has been undertaken. The first simulation is carried out to investigations the aerodynamic characteristic of the turbine by using the finite volume method. While the second simulation is carried out with finite element method for the modal analysis to find the natural frequencies and the mode shape in order to avoid extreme vibration and turbine failure, the natural frequencies, and their corresponding mode shapes are studied and the results were presented with damping and without damping for four selected cases. The predicted results show that the static pressure drop across the blade increase in the active blade side because of the vanes are fully closed and decrease in the negative side because of the all the vanes are fully open. The combined blade helps to increase turbine rotation and so, thus, the power of the turbine increases. While the modal results show that until the 5th natural frequency the effect of damping can be neglected. The predicted results show agreement with those reported in the literature for VAWT with different blade designs.   


2012 ◽  
Vol 187 ◽  
pp. 138-145
Author(s):  
Wei Jing ◽  
Xu Jian Sun ◽  
Wei Sun ◽  
Ai Gui Guo

Gearbox is a key part and is more easily over loaded and it has a high failure rate in MW-class wind turbine. It is necessary to analyze, predict and optimize its static/dynamical behavior. It presents the performance of one type wind turbine gearbox and the static analysis results of the housing, spline and gear pairs of the wind turbine gearbox are obtained using finite element method. The natural frequency and modal shape of the gearbox are analyzed. The modification data of the flank shape for each class tooth alignment and tooth profiles are obtained from the analysis. The related data on the strength and stiffness of all the parts in wind turbine gearbox are provided. It lays a foundation for the reliability assessment and optimization design of wind turbine gearbox.


2013 ◽  
Vol 482 ◽  
pp. 15-19
Author(s):  
Chen Xing Yang ◽  
Zheng Liu ◽  
Li Ping Sun ◽  
Jiong Li

Based on the experimental study of shear strengthened of reinforced concrete rectangular beam strengthened by high-strength steel wire mesh and polymer mortar , the finite element extended analysis was used. The finite element analysis software showed that with the increasing of the strand dosage and reinforcement strand length,the shear strength and stiffness of strengthened members improved . However,with the increasing of shear span ratio , the shear strength and stiffness reduced obviously .


2011 ◽  
Vol 94-96 ◽  
pp. 2153-2156
Author(s):  
Dong Ling Yu

The mainframe of high-pressure grouting machine used for daily ceramics is the main load bearing member, and it has high strength and stiffness requirements. The finite element static analysis on mainframe is discussed in this paper for researching its stress and transfiguration. The result can provide reference for design, and the discussion has some generality and practical value engineering.


2021 ◽  
pp. 1-7
Author(s):  
Sobhy Ghoneam ◽  
Ahmed Hamada ◽  
Taha S. Sherif

Abstract This paper presents a comprehensive study of the dynamic behavior of small vertical axis wind turbines (VAWTs) based on local fabricated Savonius VAWTs, which is suitable for countries that have moderate wind speed. The merits of this design are cleanliness, silent, start-up under low wind speed, independent wind directions, adaptability and ease of manufacturing. Also, this paper presents an experimental validation study for the optimized Savonius VAWT. Four verification test configurations of the optimized VAWT composite blades are designed, simulated and fabricated of Glass – Polyester with different stacking sequence layout for each. Modified mechanical parameters are introduced to improve the scalability, reliability, and accuracy of the developed models. Based on wind energy conversion system basics, aerodynamic characteristics (tip speed ratio (λ) and coefficient of power (Cp)), dynamic characteristics (natural frequencies and mode shapes) of Savonius-rotor models are presented and simulated within SOLIDWORKS Simulation 2020 software. The dynamic characteristics such as frequency, mode shape and damping factor are extensively investigated using Fast Fourier Transformer (FFT) analyzer. The results show that the role of composite material blades in improving the dynamic performance of a wind turbine is significant.


Sign in / Sign up

Export Citation Format

Share Document